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A renormalization-group procedure for effective particles is applied to quantum chromodynamics of one
flavor of quarks with a large masn in order to calculate light-front Hamiltonians for heavy quarkoHia
using perturbative expansion in the coupling constant \ is the renormalization-group parameter with the
interpretation of an inverse of the spatial size of the color charge distribution in the effective quarks and gluons.
The eigenvalue equation féf, couples quark-antiquark states with sectors of a larger number of constituents.
The coupling to states with more than one effective gluon, and interactions in the quark-antiquark-gluon sector,
are removed at the price of introducing an ansatz for the gluon méas$he simplified equation is used to
evaluate a new Hamiltonian of order, that acts only in the effective quark-antiquark sector and in the
nonrelativistic limit turns out to contain the Coulomb term with Breit-Fermi corrections and a spin-independent
harmonic oscillator term with a frequenay=[(4/3)(x, /7)]YN (\/m)?(7/1152)Y* The latter originates
from the hole excavated in the overlapping quark self-interaction gluon clouds by the exchange of effective
gluons between the quarks. The new term is largely independent of the detaflsnfl in principle can fit into
the ballpark of phenomenology. The first approximation can be improved by including more tekgsaimd
solving the eigenvalue equations numerically.
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[. INTRODUCTION closely resembles the structure of nucleons or that one can
study the parton model or the connection between the current
The purpose of this article is to describe a procedure thaand constituenti and d quarks in the context of the heavy
starts from quantum chromodynami@@CD) with only one  quarkonium discussed here. But our formulation that in prin-
flavor of massive quarks and produces the Sdimger equa-  Cciple can be attempted in these cases is greatly simplified by
tion for heavy quarkonia in a single formulation of the the restriction to only one heavy flavor. Even in this simpli-
theory. Only the first approximation for the final Hamiltonian fied case the constituent picture faces a number of problems
is evaluated. In this simplest version, the procedure involve¥/hen one attempts to formulateab initio in quantum field
a guess for the gluon mass term. But the guess appears tlia,eory,_where local interactions requ_ire cutoffs thgt dwarf
have little influence on the result. The procedure itself is no@ny finite mass parameters and one is forced to think about
limited to the simplest version and the gluon mass ansatz cdffinitely many bare particles in the Fock space to begin
be tested in the future in refined calculations and phenomwith. Thus it is important to explain how the new procedure
enology. The procedure is relativistic and can be used foworks in this case before one tackles the more complex
quarkonia in arbitrary motion, which is a prerequisite for theory with light fermions.
application in high-energy processes. Chiral symmetry is ex- In the LF dynamics, the evolution of states is traced along
plicitly broken in the case of heavy quarks and the issue othe direction of a lightlike four-vecton®. With the conven-
the spontaneous breaking of the symmetry is ignored. tional choice ofn=(1,0,0-1), the variablenx=x"+x>
The approach described here stems from the similarity=X" plays the role of time whil®~ = P°—P? is the Hamil-
renormalization-group procedure for Hamiltoniarjd],  tonian. In order to define it for bare particles in QCD, one
which has been applied to QJR] using the light-fron{LF) has to choose a gauge. No serious alternative existsAto
form of dynamicg3]. A new ingredient is the boost-invariant =A"=0. But the equatio ,F** =] implies a constraint
creation and annihilation operator calculus for effectivethat is analogous to the Gauss law and forces the Fourier
quarks and gluongsee below. Otherwise, the LF approach components ofA™ to contain inverse powers of the kine-
has been known for a long time, mainly as a candidate fomatical momentunk®. Sincek™ ranges from 0 to infinity,
connecting two qualitatively different models of hadrons: thethe inverse powers dé* produce singularities in the region
parton model in the infinite momentum frant®F) [4,5]  around zero.
and the constituent model in the rest frame of a hadédn One can impose a lower bound &, such ask*>6s",
Many contributions in that ard&] have followed the semi- to regulate the theory2,9—11. The paramete™ becomes a
nal work on exclusive processg8]. Through the boost in- smallest unit of momentum that any particle, physical or vir-
variance and precisely defined notion of effective constitutual, can carry in such discretized theories. But the fixed unit
ents, the approach described here aims at eventuallgreaks the boost invariance required for connection between
providing a bridge between the two models of hadrons in dhe IMF and the rest frame of any hadron. Namely, when
single theoretical framework. Before this can happen, howsome physically relevar®™ is made large, the smallest al-
ever, the case of a heavy quarkonium is chosen here as thewed x=6%/P* becomes small. In the IMP*— and
simplest one to begin with and test the method. This does ndhe same smal-divergences re-appear despite the presence
mean that the structure of theoretical heavy quarkoniaf 6. The key singularity is related to thix/x distribution
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of gluons in the parton model and seems to require a dynaming effective particles is based on the feature mentioned
cal mechanism to remove. One cannot just véifytogether — above thatV, contains vertex form factors of width in
with P* because boosts cannot change the cutoff in a quartiomentum space. The mass ansatz contributes to the invari-
tum theory constructedb initio [12]. ant masses through?/x, wherex is the fraction of the lon-
There exists a possibility that the small- singularities ~ gitudinal momentum carried by the gluons denotes the
are related to the properties of the vacuum state. The sul@rge, relativistic value of the coupling constant in QCD at
rules for heavy quarkonieL3] include quark and gluon con- the scalévg with a trueAocp in this scheme. The term with
densateg14] that may participate in the dynamics in the pu? vanishes fowo= as. Nevertheless, only.? counts when
smallk™ region[2,5,15—20. In the QCD picture with such the ratioag/ ag is small. Thus, in the weak coupling expan-
nontrivial ground stat¢21,22, and relativistic bound-state S/0N.
excitations of this state in the form af mesons, one can
hardly hope to resolve the sméll- singularity easily. The
situation simplifies a lot in the case of quarks with mass
>Agcp. The smallx singularity and a nonperturbative . i X
binding mechanism for quarks and gluons can interplay wittPmMall corrections in comparison o’

each other without interference from the vacuum. It is not | he requirement of cancellation of the smalsingulari-
clear yet if similar dynamical effects in the smallregion, ~ U€S In the effective dynamics imposes some perturbatively
still well separated from the vacuum singularity itself, Candetermmed constraints on the otherwise nonperturbative an-

play any significant role in the case of light quarks and g|u_satz f_or,uz. These Constra_mts re_zstnct the behaviopdfas a
ons, and whether they can be relevant and contribute to tH&nction of the gluon motion with respect to other constitu-
interactions and saturation mechanisms of parf@8s-26. ents. In the future, th_e refined versions of the same procedure
The gluon mass ansatz is introduced to represent effecf8@Y provide cons}ralnts thgt come closer to the actual behav-
of the non-Abelian interactions. The ansatz is inserted at thi" Of gluons. This behavior is hoped to be uncovered in
level of solving the eigenvalue equation for the HamiltonianCOMputer simulations that one may build around the first
H, , where\ is the renormalization-groufRG) parameter. It~ @PProximation. Then, the extrapolation tg=as can re-
is a tool used to approximate the energy of interacting effeccOVer the original tr_\egry from a few terms in the weak-
tive gluons in the presence of quarks and should not be a&0UPling expansion iu” approximates the behavior of ef-
sociated with a violation of gauge symmetry in the initial fective glu.ons well. Inltla!ly, the gluon mass term is viewed
Lagrangian. All the Hamiltonians discussed here are define@S @ function of the relative momenta afgcp. The latter
only in the gaugeA*=0, andH, does not exhibit local depends Oy asig exp(—.c/ao) with a posmye constant.
gauge invariance. The entire procedure that starts from th&hiS means tha‘\QCDZ‘_’fJ‘n'She_S to all orders in the perturba-
initial Lagrangian and eventually uses the mass ansatz fdfve expansion, ang.“ is considered to be on the order of 1.
effective gluons in solving for eigenstatestdf is similar to ~ Before one knows morey can only be estimated on the
the one proposed in ReR] and later discussed in simplified basis _of implications for the resu!tlng Schlinger equation.
matrix models[27,28. New elements of the present ap- The size ofu can be compared with four scalegcp, Ao,
proach are the limitation of power counting to the relative-M and the Bohr momentum scalg=aom/2, which is dis-
motion variables, the exact boost invariance, removal ofinguished nonperturbatively by the Coulomb interaction.
smallx divergences from the eigenvalue problem fof ~ But if u? is right, then[V - (aq/as)"u?] must be a source
through the mass ansatz as a function of the relative moRf only small corrections in the whole range of couplings
menta, and no need fad hocpotentials in the first approxi- Petween 0 andys. This is taken for granted in the present
mation. All these features will be described in detail later. &rticle. Since the first approximation turns out to be not sen-
In brief, H,=T,+V,, whereT, is the kinetic energy Sitive to the dgtalls ofu, new information can be obtained
operator made of all terms that are bilinear in the creatiorPly in the refined calculations. _
and annihilation operators for the effective particles, ®Rd The value of the weak-coupling expansion scheme for
represents all other terms. The paramateiefines the width Hamlltor_uans is that it starts f_rom a IO(_:aI theory and leads to
of momentum-space form factors fy . For some value of H, thgt is capab_le of descrlb!ng physically releyant nonper-
A=\o~1 GeV, one can freely add tbl, a term of the turbatlve_ dynam!cs even H, is calt;ulated only in low or-
f 1— (e, la)" w2 wheren=2 Thg number 2 en- ders. This idea is known to Work_ln the case of QE_D: the
orm [ o s ik ) o - . Coulomb potential accounts for highly nonperturbative dy-
sures that corrections to th_e first approximation occur first imamics of atoms, including the nature of chemical bond,
the fourth-order of expansion &f, in powers 0fgo=0y,,  while the Hamiltonian itself is only of the formal order af
ap=g3/(4). This is the lowest order at which a perturba- Condensed-matter physics illustrates this point in still wider
tive shift in the gluon energy in any state can influence thedomain.
contribution of that state to the dynamics of any other state in But when one applies the weak-coupling expansion idea
perturbation theory, keeping intact the QED-like small cou-to QCD[2], one faces the fact that the strong-coupling con-
pling expansion scheme with a Coulomb potentiel.stands ~ stant rises to 10, 30, or even 100 times larger value than in
for the mass term that one assigns to the effective gluons dhe case of atoms or positronium in QED. This leads to a
the transverse size X§. The interpretation of & as the complex interplay between the perturbative and nonperturba-
spatial size of the color charge distribution in the correspondtive parts of the calculation, enhanced dependence of observ-

Hy,=Tag+ 12+ Vi, — (@0l ag)"u?] @)

and the terrr[V)\o—(aolaS)”,uZ] is treated as a source of
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ables on the RG paramet&r problems with obtaining the (regulated bare theorny.,=1) to a finite value(effective
Poincaresymmetry in solutions, and amplification of arti- theory withf,), RGEP introduces some correlations of spe-
facts due to the smak- regularization. Most of the prob- cial relativity between transverse and longitudinal momenta
lems seem to come from perturbation theory in the RG parin the effective interaction terms i, .
of the calculation. An exact RG procedure by definition pro-  |n the case of the smaki* singularities, the regulating
videsH, whose structure depends anbut the spectra and factorsr 5 limit only the ratios of moment&™. The ratios are
Smatrix elements do not. However, when one uses expanimited from below by the dimensionless parameferAs
sion in powers ofeg and then extrapolates Wo=as, &  4ready mentioned, all details of the factorsare explained
considerable depr—_:ndence of the elgenspll_Jtlo_n; @an eN-  |ater. But there exists a qualitative difference between the
tsr?ai bgf:uzg cr):; Téilsc'gﬁ m?rgi te;rr? dS. nglig'sggﬁr:g msct)gfelﬁltraviolet regularizatiom , and the smalk regularizatiorr s
ymp y P at should be pointed out in advance for conceptual reasons.

[28,29. One has to find the right value fas at givenhg Let us stress first that every creation or annihilation operator,

from fits to bound-state observables, and perform consisl- beled b turkt . that enters the initial int i
tency checks for whole sets of different observalpi. In abeled by momenturr -, that enters the initial Interaction
Hamiltonian is supplied with a corresponding factg(x),

QCD, such checks involve the unknown functions of mo- S L
menta in the finite parts of the ultraviolet counterterms, unWherex=Kk"/p”, andp" is the sum of all momenta that
known terms depending ahocp, and artifacts of the regu- label all cr_eatlon operqtors, or, equivalently, aII_ann|h|Iat|on
larization of smallk® divergences. So many unknowns OPerators in the same interaction tefsee Appendix A The
suggest the possibility that the approach may never achiel®@GEP procedure does not remove dependence sdfrom
the desired level of predictive power. But the simplicity of H, because the smatl-singularities are not purely ultravio-
the harmonic potential found here in the first approximationlet in nature. However, the effective theory does lead to can-
illustrates that there is a high degree of order in the richcellation of the smalk singularities in colorless states,
structure ofH, . It is a consequence of preserving all sevenwhich is a correlation that is built in through the gauge sym-
kinematical symmetries of the LF scheme in the RG procemetry of the Lagrangian that was used to construct the initial
dure. These symmetries limit the large number of terms thatlamiltonian, and which is preserved in the RGEP procedure.
are allowed by the LF power counting using absolute mo-A cross check on the effective theory is provided by the fact
mentum variable$2], to a much smaller number of terms that in QCD withr 4(x) ~x°, H, contains the coupling con-
that depend only on the relative momenta of the constituentstantg, , which depends on the scalein the same asymp-
The LF symmetries must also be respected by the initiatotically free way[32] that characterizes the running cou-
regularization prescription for the required counterterms tdling constant dependence on the renormalization scale in
be simple. the Feynman diagrani83,34]. This shows that there exists a
The renormalization-group procedure for effective par-regularization procedure of smadlsingularities that together
ticles (RGEP, which is employed here, begins with regular- with RGEP renders correlations in the effecthig that cor-
ization of the ultraviolet and smak® divergences by inser- respond to the known behavior of the fully relativistic theory
tion of some regularization factorsonly in the interaction in its perturbative domain.
terms in the initial Hamiltonian. Roughly speaking, the regu- HamiltoniansH, = with small A, are worth studying be-
larization factors have the structure=r,r 5, for every bare cause their eigenstates can be expanded in the effective par-
particle in every vertex. All relevant details of the regular-ticle basis in the Fock space and the wave functions in this
ization factors are given in Sec. Il and Appendix A. The expansion are expected to correspond to the constituent pic-
factorsr, limit the range of relative transverse momenta ofture of hadrons. This is envisioned in analogy to the models
the interacting bare particles by the parameteiThese fac- based on Yukawa theor{35]. The interactions are sup-
tors are responsible for the transverse ultraviolet finiteness gfressed by the form factors and cannot copiously create new
the regulated theory. Then, the RGEP procedure produces th@nstituents, even if the coupling constagtbecomes large.
effectiveH, by solving operator differential equations. As a Exotic hadron states may have their probability distributions
result, H, is written in terms of operators that only create shifted in the number of effective particles above the con-
and annihilate effective particles, and interactions of thesatituent quark model values of 2 or [36]. The effective
contain new form factors, that differ considerably from the dynamics can be in agreement with requirements of special
regularization factors, of the initial bare theory. The form relativity even if it is limited to a small number of effective
factors contain only a finite width parameterand are com- constituents, and the RGEP provides rules for constructing
pletely independent of the regularization scheme. Also, the representation of the Poincageoup [37]. But the key
limits changes of entire invariant masses of groups of effecfeature is that the transition between the bare and effective
tive particles in interaction. These invariant masses dependegrees of freedom is made in one and the same formalism.
on the transverse and longitudinal momenta simultaneousl¥here is no need to match different formulations of the
in a relativistically invariant way. It turns out that by lower- theory, such as in the case of lattice theory and the con-
ing N\ through solution of the RGEP differential equations tinuum perturbation theory in the Minkowski spd&8—40,
with initial conditions that include counterterms, one ex-with none of the parts meant to cover the whole range of
cludes a possibility thaty # 1 when\ <A, because the rela- relevant scales on its own.
tive transverse momenta are always smaller than the invari- One more comment is required concerning the small-
ant masses. Thus, on the way of reducingrom infinity  divergences in the eigenvalue equationky. In the initial
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studies that used® to limit bare particles’ momenta and and
employed coupling coherence to derive certdip[41-45,

one could keep only a quark-antiquark sector in the corre- T
sponding eigenvalue problem and the resulting equation was HAF; [k]kTakacakvc' )
finite in the limit 8°— 0. Similarly, no smalk™* divergences

were encountered in the case of gluonium approximated byhere k denotes the three kinematical momentum compo-

states of only two gluonft6]. In contrast, the present RGEP nents k™ andk® = (k*,k?). The symbol in a bracket, such as
approach demands inclusion of states that contain an addik], refers to the integration measure,

tional effective gluon which is needed to cancel snxadli-

vergences. For example, if one keeps only a pair of the ef- dk*d%k*

fective quark and antiquark, the leading nonrelativighi®) (k1= 163kt ®
terms are free from the smallsingularities 31] but relativ-

istic corrections are singuld@7,48. When the additional The subscript stands for color and- for spin. The massn
gluon is included, the condition of cancellation of the small-is assumed to be very large in comparisomtgcp .

x divergences becomes a guide in understanding the gluon The quark-gluon coupling terms ki, , that preserve the
dynamics. The rules of including the gluons must be broughtiumber of quarks and antiquarks have the form

under quantitative control and the well-known case of heavy

qguarkonia provides a laboratory for testing the approach _ = i pwtath G AqTaT

based on the gluon mass ansatz. The tests require a first Y—gl§2:3 J [123]r3.0 125028103~ 129028103+ H.C.).
approximation to begin with and a candidate is identified in (6)
the next sections. _

This paper is organized as follows. Section Il describesThe regularization factors; is singled out to indicate its
the initial Hamiltonian of LF QCD with one heavy flavor and presence. The coefficienfs; and j 3, are functions of the
the procedure for deriving an effectivg, . Section Ill dis- quark and gluon colors, spins, and momenta, with all details
cusses the eigenvalue equation for a quarkonium, and intrprovided in Appendix A. These coefficients contain the
duces the ansatz for the gluon mass term. Sealffects in  three-momentum conservatiofi-function factors, denoted
the dynamics are described in Sec. IV. The resulting potenua[gy 5, color factors tég, and products of spinorsj4,

in the Schrdinger equation for 2QQ bound state is de- —U,y*uz and %= vy v,. The latter are contracted with
scribed in Sec. V. Section VI provides a brief summary andpolarization vectors for gluons, so that

outlook. The Appendixes contain key details required for
completeness.

kLZ

123:h5t%39,wj b1 s (7)
Il. HAMILTONIANS and

The regularized canonical Hamiltonian of LF QCD with J23= Ot5,9,, i 581" . (8)
one heavy flavor of quarkdy, is given in Appendix A. It , )
includes ultraviolet counterterms. This section describes thd N€ instantaneous terf, 2 contains
main features oH and the RGEP derivation of the effective
HamiltonianH,, with a finite width\. H, is independent of Z=-g2>, f [1234 5t 43 0 i 5 ad (ki —k3)?]
the ultraviolet regularization factons, in H when A —x, 1234
The smallx regularization factors s, which are also present
in H, and their role inH, will be discussed later.
The initial Hamiltonian has the structure

X [?1,2?4,3+?2,1?3,4] bId§d4b2- 9

The current factorg and the gluon polarization vectors
grow with the relative transverse momenta of the interacting
particlesk'. These can increase to infinity and the regular-
ization factors , are introduced to limit the range to a finite
one. In addition, there are smalldivergences due to the
inverse powers oX, especially in the gluon polarization vec-
tors that contain terms proportional te'/x. The smallx
singularities are regulated by factarg.

The RGEP procedure generates ultraviolet counterterms
contained in the operatof in Eq. (2) and renders the effec-
ive particle HamiltonianH, which is independent of , .

he procedure is defined order by order in the formal expan-
sion in powers of the bare coupling constanfThis expan-
K24 m2 sipn is eventually re-.written in terms of the effective cou-
Hyo= >, [k]—+[bl(rcbk(rc+ df e, (3  Pling constang,, which replaceg in H, and depends on
oc k the ratioN/Aqcp [32]. The procedure is designed so that

H:Hl/,2+ HA2+H¢A1//+ H(¢¢)2+X, (2)

where the ternH > denotes the kinetic energy operator for
quarks,H 2 the kinetic energy operator for gluorig,;»,, is
the interaction term that couples gluons to quakkg;,2 is
the instantaneous interaction between quarks,adénotes
all other terms including the counterterms.

In terms of the creation operators for bare partickésfor
quarks,d' for antiquarksa' for gluons, and the correspond-
ing annihilation operators, the kinetic energy terms are of th
form
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energy differences in denominators of the perturbative evaluand M, stand for the total free invariant masses of the par-
ation of H, are limited from below byr. Therefore no in-  ticles createdsubscriptc) and annihilatedsubscripta) by a
frared divergences are encountered in the evaluatidf,of  given product.
Also, no perturbative intrusion into the binding mechanismis The effective Hamiltonian is defined to have the structure
generated when is kept above the scale of typical relative
momenta of the bound-state constituents. These features H\=H\Gy, 17
qualify the RGEP as a candidate for providing an answer to
the well-known question of how it is possible that a smpleWhereGk has to be calculated for givef, . One usegj,
two-body Schrdinger equation may represent a solution to a= Gx(d), which is introduced in the same way & in Eq.
theory as complex as QC[2,49]. (11). G, satisfies the differential equation

A very brief recapitulation of the RGEP is provided here " ,
for completeness. The derivation ldf, begins with a unitary Gi =[G 11~ f)g'}go]' (18)
change of the degrees of freedom from the bare quarks and
gluons in Eq.(2) to the effective ones. Leg commonly
denote the bare operatds$, d', anda’, and their Hermitian
conjugates. The operators are transformed by a unitary
operatorl{) into operatorgy, that create or annihilate effec- [T,Go]=[(1-)G] . (19)
tive particles with identical quantum numbers,

whereG,=G— Gy, Gy is the part ofH that does not depend
on the coupling constarg, and the curly bracket with sub-
script G, denotes? that solveq 31]

The initial condition for Eq(18) is thatG,.,=H,

O =Uhaidy . (10 X
The bare pointlike particles ikl of Eq. (2) correspond to Gi=H+ L dsfsGis 1(1- fs)g|s}g0]. (20)
equal infinity. One rewrites the Hamiltonidhin terms ofq,

and obtains This equation shows that one can find the countertefrirs
H that remove regularization dependence fr@m. H,

=H,(a\). (1) —f,g, andH, is obtained by replacing by g, .

. : . A

Usingl4, , one has G, is expanded into a series of terms~g",
Hy=H\(a) =U HU . (12 G=>, . (21)

n=1

ThusH, has the same coefficient functions in front of prod-
ucts ofgs as the effectivéd, has in front of the unitarily 71 iS independent ok. Only the termH 5, needs to be

equivalent products of,’s. Differentiating, with respect ~discussed here. According to E@), 7,=az+ a,, where
to \. one obtains a1 denotes terms that create a gluon and the terms that

annihilate a gluor(the left subscript denotes the number of
H=—[T\  Hy], (13) creation and the right subscript the number of annihilation
operators The corresponding effective Hamiltonian interac-
where7, =UU} . T, is constructed using the notion of ver- tion term is obtained by multiplying the integrand in E6)
tex form factors for effective particles. For example, if anby f\ and transformingy’s into g,’s.

operator without a form factor has the structure When one neglects the terms that change the number of
particles by more than 1z,= 811+ B,,. Equation(18) im-
N plies
O\= J [123]V,(1,2,303:08 2%, (14)
m=[{f' mi} fr]=Fol 7], (22)

then the operator with a form factor is written fggf)x and with f,={f"}f

has the structure —f{f'}. The first factorf in f, refers to in-

variant masses in the first in the square bracket, and the
second in f, is for the second. The square bracket denotes
f)\()}\:J [123]f) (M1, M3)V1(1,2,30] 1,0} 0 3. all connected terms that result from contractions that replace
(15) productsqiq;r by commutators or anticommutators appropri-
ately for bosons and fermions. The solution for is then
Different choices of the functiof, imply different interac- ~ given by
tions. The choice adopted in this study] 82] o= For[ 1171]+ T 23)
fA(Miz, Ma) =exi] — (M= M3AN]. - (16) where ., includesH )2 and the second-order mass coun-
terterms fromX in Eq. (2). F,, depends on incoming and
For any operatoo expressible as a linear combination of outgoing momenta in the two vertices generated byrthelf
products of creation and annihilation operatdi®, contains  one labels the three successive configurations of particle mo-
a form factorf, (M., Mj,) in front of every productM,  menta bya, b, andc, in the sequencar,,b7,.c, and intro-
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duces the symboliv=M5,—M?Z,, where M}, denotes 0(2) 0(—2)

the free invariant mass of a set of particles from the configu- 1 2 1 2

ration u that are connected to the particles in the configura- X Z

tion v by the interactionr,, in the sequenceir v, the 3 4 3 4

vertex form factor of Eq(16) in the interactionr,, can be

written as FIG. 1. Momentum labels in the interaction term mediated by

the exchange of one high-energy gluon. The same labeling is used

f)\(MabvMba):eXF{_(abZ/)\4)]Efab- (24 in the exchange of effective low-energy gluon in the next section

and the appendixes.

If one then denotes the parent momentum for the verfex
+

by Py, , and writesp,, in place ofP,, while all the minus For (M2, M2 m2) 1k =[F2(M2,m?) - 1]/(MZ—md).
components of momenta of the virtual quarks and gluons are (33)
given by the eigenvalues ¢f=H 2+ Haz,

The gluon kinetic energy term reads

pbab at pbcb c

Fa(a,b,c)= [fabfoc—1]. (29 K24 42

2 phe2 + i

ba”+bc To=2 | [K— e (34
The second-order perturbation theory renders

The explicit form of u? [31,32 is not needed here.

H =Tt Toxnt Il Yoon + Voo + Zgar]- (26) The next term in Eq(26) is Y, =f,Yqq

The kinetic energy term for effective quarks is
V=03, [ (1230 a1 S0 (M )

kt2+m?
TQ)\ = EC f [k]k—+[blkacb)\kac+ d)tkacd)\koc]:
(27)

X[ ] 2dbl 8] 10ya+ j2ad] 8] 1Ay + He].  (35)

The effective potential termV,=f,Vyq , originates
where from the exchange of bare gluons with jumps in the invariant
mass of intermediate states abovesee Fig. 1:

m§=m5+(4/3)ng [XK]7§(X)% li25e 7]

Vi=—-g22 J [1234]5t3:455V, (13,24 bdld,b,,
X[Fon(m?, M2 m?) = Fyp (P M2, mP) T/kg 1234

(36)

28

@9 where
In the order of appearance is the quark mass squared that
should be present ifﬁqho in order to fit data for quarkonia, d,.(ks)  — 5 5

V, (13,24 = i asf ,
m2=m?+0(g®). The factor 4/3 comes from color,N¢ \(13.29 : V223t ( M. M2
—1)/(2N;). The integration measure is _ 5
5 5 XLO(2)1 5(Xs5/D)T 5(Xs14) F22(1,253,9
[xx]=dx dPxt/[16m3x(1—X)], (29 ~ ~
e _ T 0(=2)1 5s(X53)T 5(Xs572) F2x(3,154,2 ].

wherex=Kkj /k; is the fraction of the quark momentuky (37)

carried by the virtual gluon, and" =k; —xkj is the relative
transverse momentum of the gluon with respect to the quark The sum over polarizations of the intermediate gluon
2. The effective mass does not depend on the particle motiopeads

This is a unique property of the RGEP in LF dynamics. The

smallx regularization factor is n*kg+kEn”

- d,uv(kS): _g,uv+ k+ ’ (38)
rs(X)=rs()rs(1=x), (30 >
where[32] where the gluon momentum is
r5(X) =x26(x). (31) ks =e(2)(k; " kg, (39)
The middle argument af,, is ande(z)=6(z) - 6(—2),
M2=(m2+ k-2)[(1—x) + kX, (32 z=(ky —kz)/(k{ +k3), (40)
and while xs=|z|=kd /(k; +k3), and
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l—¢—«—2 the RGEP construction of the Poincaikgebra at scalg in
€ guantum field theory is given in Rdf37]). The eigenvalu&
3—>—L 5 4 has the form
FIG. 2. Momentum labels in the instantaneous gluon interaction E=(M?+P+2)/P". (49

term. . . .-
The center-of-mass motion is separated from the binding

mechanism, which is a unique LF-dynamics feature pre-
served by the RGEP, arfd® andP* drop out of the eigen-
value equation. The stat®) is written in the effective par-
ticle basis as

kg =kg2/ke . (41)

The last term in Eq(26) is the instantaneous interaction
between effective quark&, =f,Zqq ,

IP)=1Q\Q0) +|QuQugn) + - - (46)

_ 2 pa sa T 4t

4 d 1;34f (123408415, (13.29b01035habiz, The dots denote components with more than three effective

(42 particles. Such expansion does not apply in the case of the
bare particles because those interact locally and the interac-
tions disperse probability density to high momentum regions
and multiparticle sectors[35]. The wave function

Z,(13,24= %Hzﬁﬁﬂﬂ/l 2 MO s(xe)Tsxew)  P1slK1s.Xa) of the effective valence componei®,Q,), is

kg introduced by the formula

+0(—2)T §(Xs)T (Xs72) - (43

where(see Fig. 2

0,00= [ 113P By b ialio), @D

lll. EIGENVALUE EQUATION where the quark and antiquark quantum numbers are labeled

OnceX is lowered in perturbation theory to some value With 1 and 3, respectivelyy,5( x73,X;) must have dimension
)\, just above the scale of binding mechanism, the resultingf 1/x75 for the canonical normalization condition to give
H,, can produce the mass and wave function of a boun@p'|p>:p+'3(p_p') (quantum numbers of the statgR)
state of interest in a numerical diagonalization. The basignd|P’) must be the sameThe relative transverse momen-
states can be limited to only those that have free invariantum of two particles, 1 and 3, is always defined as
masses within a range of size abauaround the eigenvalue. N S e .

This has been verified numerically in a matrix model with k13~ (K3 ky =Ky k3)/(ky +K3), (48)
asymptotic freedom and bound staf@8-3(d. In that calcu- - )

lation, H, was derived using perturbation theory up to sixth@ndX1=k;/P"=1—xs. The wave function depends on
order. A quite small set of effective basis states with energiend quickly vanishes foik;d >\ The normalization condi-
between 4 MeV and 4 GeV was sufficient to reach accuracyion gives

close to 1% in the computation of the bound-state energy on _ _ ~

the order of 1 GeV. In great contrast, the initial Hamiltonian (QQQ\Q\)=Ngag(M)PTS(P=P")|pr—p, (49

of the model coupled all states in the entire range between
0.5 keV and 65 TeV. Preliminary estimates performed in"Vhere

Yukawa-like theories also indicate that the form factéys

suppress large momentum changes so strongly that the effec- Noo(\) = > j [ X1 K13]| P13 K13, X1)| % (50)
tive dynamics derived in low-order perturbation theory re- 13

Sﬁ:\éisﬂ? : I&E‘;ﬁ:&gﬁigﬂ? issfrr;) an:j : Ig:ﬁlrpg:gglreticiﬁng%evenl'he_prc.)bal:fility of finding other components than. the
In the case of heavy quarkonia the same strategy shoul@\Qx) is given by I=Ngg(X). The value ofNgg(%) is
work even more accurately than in the Yukawa theory benot known but it may be close to 0. On the other hand, one
causeas may be very small in comparison to 1. But the €xPectsNog()) to be close to 1 whem>Aqcp and
weak-coupling expansion fd1=|AO produces new interaction

terms already in ordet. These are derived here. An ansatz
for the gluon mass allows us then to finesse the structure afvhen the wave function is negligible for relative momenta

the first approximation for the resultifngQ potential. much larger than such, the NR approximation must be
The eigenvalue problem fdd, reads accurate in description of the relative motion of quarks. In
addition, whena, <1, the Coulomb binding mechanism is
H,|P)=E|P), (44)  expected to work and the dominant region of momenta

should lie around the Bohr momentum schie= @, m, pro-
where|P) denotes an eigenstate of the opera®jsand Py vided that\ > kg . At the same time, all the fermion spin and
with their eigenvalues denoted By andP* (an example of relativistic correction factors cannot become lafgediverg-
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ing [51]) in the NR expansion because of the presenck of «, . The interactions cause a shift in the gluon energy and

[35] But the dynamics of the domina‘f@)\ak> Component make the Eigenvalue equation differ from a similar one for
receives some significant contributions from d@@gQ pogit_ronium. The idea .Of se_zeking an a!”saFZ fo_r the shift and
component in the smaks region, since the coupling to the building a corresponding first approximation in the quark-

. _ antiquark sector may seem completely new, but it patterns
gluon sector grows likars/xs whenxs—0. The gluon com QED with the exception that there one knows from the outset

ponent may have a negligible contribution to the norm butthat the leading approximation to a hydrogen atom or posi-

halsf tgntc)eenaecgclggtrggdsg:rtc\)l\rlgﬁitﬁ zrlrl]ilrl{s entirely, the eigen-t ronium is given _by a two-body Schdmger_ equation with a
value Eq.(44) would read ' Coulomb potentlaI[SO—SZ. The NR lattice approa_ch to

: heavy quarkoni§53,54 also starts from a two-body picture.
The key argument is not theoretical but comes from the phe-

[Tor+ Fx(Vaa + Zga) JIQQU=EIQQ)). (52 nomenology of hadrons. Theoretically, an ansatz for the en-

This equation is mentioned here because an analogous of&gy shiftin the sectdiQ,Q,g,) is an attempt to harness the
was considered befof@3—-45 in a scheme using coupling giant eigenvalue problem fdt by turning it into the eigen-
coherence and the absolute lower bound on gluon momentsglue problem foH, and identifying the corrected Coulomb
ks > 6. The equation found in Ref43] had a finite limit ~ picture that may apply as a first approximation in QCD.
when §*—0. The resulting dynamics contained a logarith- A Practical way to increase the invariant mass of the
mically rising potential and reproduced some of the characthree-body sector and preserve the kinematical symmetries
teristic features of the charmonium and bottomonium specof LF dynamics is to add a mage” to T, , using the rules
tra. This was a considerable success in view of how crude theutlined in Sec. I; see Eq1). Since the divergence in the
approximations were and the fact that the potential derived igmallx region disappears in the case of positronium when
Ref.[43] and employed in Ref§44,45 behaved differently 0one adds a sector with a massless photon, a gluon mass that
in the transverse and longitudinal directions. But that stratapproaches zero wheg—0 can remove the smat diver-
egy could not work in the RGEP approach. gence in the quarkonium case. The rotational symmetry con-
Three reasons can be given now for why the QQ@Q dition on ,L'LZ can be impos.ed by demanc_iing that 'Fhe resulting
approximation is not allowed in solving the eigenvalue prob—pme_ntlal n Fhe quark-anthuark sectoris a rotationally sym-
lem for H, . Two of them are related to the fact that the metric function in the center-of-mass variablese below.

. — — . Given a gluon mass ansatz, the whole eigenvalue problem
couplmg between the sectol®,Q,) and.|QAQAgA> IS Bro- for H, is limited to only two coupled equations
portional to the first power of the coupling constgnbeing A '
mediated by the ternY, of Eq. (35). The first argument is

nonperturbative. It is based on the result that the matrix mod- (Ta+ T QQ9+Y|QQ)=E[QQg),
els with asymptotic freedom and bound states lead to a suc- o _ _
cessful approximation to the eigenvalue equation Wwifhof Y[QQQ) +[Tq+ f(Vyqt Zqe)11QQ)=E[QQ) (54

second order irg, if and only if all important matrix ele-
ments in the properly chosen energy window are accountegpe subscriph is omitted. ﬁ—gk differs from T, of Eq. (34)

for. These certainly include matrix elements on the ordey of by replacement of the perturbatiyuf by the ansatz:2. It is
[28,29. The second argument is perturbative, and CONCeMNgnderstood that:? may depend on. All terms of orderg?
the evaluation of the effective Hamiltonian that acts in the;

< i, . . in the three-body sector are ignored_because they do not
sector|Q,Q,) alone. When the stat¢®,Q,,) are lifted i conyrinute to the dynamics of theQQ) component in

energy by an amount of order 1, quantum transitions in th§aond-order perturbation thedisee below. This dynamics
quark-antiquark  sector that proceed through the stateg gescriped by the HamiltoniaH g that acts only in the
|QxQ,0,) are formally of orderg? and must be included quark-antiquark sector. One should keepHgg terms of
when one computes the quark-antiquark dynamics in a seriggrmal orders 1g, andg?, when the effective Hamiltonian
of powers ofg up to terms of the explicit order af,. The  H, is calculated up to the terms of ordgf, while u?~1.
third argument is based on the fact that E8p) has a finite  The bareg is understood to go over in higher-order calcula-
limit when 6—0 only in the leading NR approximatidB81].  tjons to a suitably defined, [30,32. The perturbative ex-
Relativistic corrections contain singularitie47,48 and the pansion is applied only in the evaluation ldf,5. Solution
additional gluon sector has to be taken into account to refor the bound-state spectrum Hifyg is not perturbative.

move them. . To evaluateH 5 as a power series ig, one can introduce
The eigenvalue Eq44) implies that thd Q,Q,g,) com-  an operatorR that expresses the three-body component
ponent satisfies the equation through the two-body one,
[Tq)\+Tg)\+Vqu)\_E]|Q)\6)\g>\>: _Y)\|Q)\6A>- (53) |Q69>=R|Q6> (55)

Vqaqon denotes interactions with sectors with more than ones‘ir[CeY is of orderg, Ris expected to_be at least of oragr
gluon and/or additional quark-antiquark pairs, and the nonlf P denotes the projector on tHQQ) sector, one ha®
Abelian gluon-quark and quark-antiquark potentials of order=(1-P)R=RP and PR=R(1—-P)=0. The effective
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Hamiltonian in the QQ) sector is then given by the formula The effective eigenvalue equation for heavy quarkonia,
[55,56 (see also Ref.35] concerning the context of RGEP HqglQQ)=E|QQ), takes the form

1 R R 1 124 12 mz(l) m2(3)
Hog=—=—=(P+R"H,(P+R)———. (56) g tmy M) M)
VP+RR VP+R'R X1X3 X X3 W K13,X1)
In the first order ing, 4 g [ dxpd2ich,
; - 316m XoXq (13,24 4( K$4,X2) =0,
RT,— (Tq+TgR=Y. (57)

(59)
Consequently, the second-order expression for the matrix el-

ements ofH g between different statésandj in the|QQ) ~ Where
sector is

(i1Hagl =1 Te* F(Vagt Zag) 1) ISAZN s 2T 21324

+ 2_x5d“”(k5)1f2]43WA(13'24)’ (60)

+1('|Y ! +
(i =
2 Ei=Tq— Ty

)vm.

E—Tq—Tq

0(2)T s(Xs2)T o Xsya) T (M, M Zp) T (M 25, m?)
(k124 m?) /X, —[(k1a— k30 °+ 12(2,5,3) 15— (k52 +M?) /X,

0(—2)1 s(Xsja)T 5(Xs2) Fr (M2, M E T\ (ME,m?)
(ks +mP) /X3~ [ (k54— K792+ p2(1,5,8 /x5~ (k54 +M?) /X,

wx(13,24):”

O(2)T s(Xs)T s(Xs7a) Fr (M2, M Z) L (M 25,m?)
(k52 + M) Ixg—[(k1a— K52+ 12(2,5,3 /x5 — (k12 + M) X5

N O(—2)T §(Xs2) T 5(Xs0) Fr (MP, M E) T\ (M E,m?)
(K34 +M2) /%o~ [ (k54— k19 ?+ 1?(1,5,9]/x5— (g +mP)/Ixq ||

(61)

The terms withé(z) describe the emission of the gluon by M3=[k'2+ u?(1',5,3))/x+ (k- 2+m?)/(1—x),

the quark and absorption by the antiquark, while the terms (63)
with 8(—2z) describe the gluon emission by the antiquark

and absorption by the quark; see Fig. 1. The first squargnd

bracket corresponds to the first term in the large round

bracket in Eq.(58), and the second bracket corresponds to ) ) ~, PR
the second term. The mass term originate from the emis- m{(3)=(4/3)g f [xx]r 5() FX(m*, M?)
sion and re-absorption of the effective gluon by the same L
quark, in which case both terms in the bracket of &@) are i7imrd, (k) /X3 64
equal. The mass terms read , 4
g (k242 xg— (ki2+ M2)Ixq
_ where
M) = (@307 [ Dl 3001w, M)
. MG=[x"2+ pA(1,5 ,3)])/x+ (k-2+mP) /(1= X).
J VJ px d,uV( k)/xl (65)
12 12 2 ! (62)
(k15 +m?) /%X, — (k15 + M D)X . . .
M is given by Eq.(32). The subscript 1 denotes the inter-
mediate quark and’5denotes the intermediate gluon in the
where self-interaction of the effective quark 1, and, similarly, 3
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12, 02 ~2 0 =2 2
K13 +mg m1+@_M2 T X0 4 g
X1X3 X1 X3 137 3 16773

and 5 denote the intermediate antiquark and gluon in the
self-interaction of the effective antiquark 3.

The gluon four-momentunis in the sum over polariza-
tions, i.e., ind,,,(ks) in Eq. (38), can be written as

dx, d? K24112143
><J— 2 Vo 13247 (%) =0,

=&(2)qfj +n“[ks —e(2)q;; 112, (66) XXs Pt
whereij refers to quarks 1 and 2, or antiquarks 3 and 4, (70
gy =ki—k . 67) where
The quark momentum four-vectors are on the mass shell, 00(13,24="T132lks +2(2)(kz —ky +k3 —kq)/2]
e e gl Corecs o e e O Aoz =23
and the other with the current of the antiquark. In the self- +f1320 9(2)?5/1}‘5/4+ 9(_2)}'5/3?5&

interactions, both momenta are contracted with the same cur-
rent. The momentunks contracted with currenj can be
expressed throughyj . But the current conservation implies
that the terms proportional tq;; give zero. Therefore one (71)
can replace Eq.38) in the gluon exchange terms by

1
+5lks +e(2)(ky kg +kg —kg)/2]wo,

B and the last factor OfVOEP+W>\O(13,24) is abbreviated to
dp,y(kS) = g,u.v+ n,unv[kS + S(Z)

X (ky —ki +k3 —ky)/2]/ks . (68) Wae 9(2)?5/55/4‘:1,52‘:53,44_ o(— Zf5/55/2f3,54f51,2
k; —ks(2,53—-k, k3—kg(1,54—k;

In the quark self-interaction one has

9(2)?5/1?5/4f1,52f53,4+ O(—2)T s 52T 3,54 51,2
kg + Ky — ki — S e
Ks; (72)
The compact notation includes

with an analogous result for the antiquark.
The terms with the metrig,,, are regylar in the smaﬂ5. =1, (Mizysz)’ (73)

region, while the terms witm,n, are singular. The metric

terms lead in the well-known way to the Breit-Fermi spin-

dependent terms with a Coulomb potential. A discussion of Fsi=rs(Xss), (74
the Breit-Fermi terms and gluons in the context of QCD can o

be found in Ref[13] and references therein. The singular fi,k,izfzxo('-k*l)’ (75
terms withn,n, are independent of the quark spin. It is

shown below that the latter generate the harmonic force be- T<§(i N ,k):[K§2+ w?(i,j,K) 1k, (76)
tween quarks when combined with the fermions’ self-

interactions, which are also independent of the spin. Thus the ks =8(Z) (K3~ Kz4). (77

harmonic force appears without Breit-Fermi terms. This re-

sult sets the RGEP approach apart from the models employethe mass terms with thg,,, terms suppressed are

in Refs.[13,57—-63, where one had to guess whether a con-

fining potential appeared with or without Breit-Fermi terms. ~ [iT]? 1 x(M?2—m?)

The spin-independent harmonic force is akin in this respect m? = 39 J [xx ¥ 5(X)f| 115! 2 2 mi= M2

to the lattice picture and the original charmonium model ' (79)
based on the Coulomb for¢é4—67.

In the explicit discussion of singular smallfeatures of  fori=1,3. M, is given by Eq.(63) and M5 by Eq.(65). In

Eq. (59 in the next section, all theg,, terms are omitted. both cases,M? is given by Eq.(32), and the factor
The reader should keep their presence in mind until they argj */k+)2—4(1 X).

re-inserted in Sec. V. The symbols of mass, wave function,
and potential are provided with a tilde as a reminder about
the need to include thg,,, terms. Also, expressions for the
quark masses are simplified by considering from now on All small-x singularities of the eigenvalue E¢9) are
only A=X\,. The subscript 0 indicates that=\,. The an- contained in Eqs(70), (71), and (78). We first discuss the

IV. SMALL- x BEHAVIOR

satz foru? is understood to correspond iQ. exchange terms, then the mass terms, and finally the net ef-
With the g,,, terms hidden and\=\,, the eigenvalue fect of the interplay between these terms.
equation reads The analysis hinges on the properties of the energy of
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motion of a gluon with respect to the parent quapk,ky 5 u2(1,5,4)
=X; Kézlxs. p; is the momentum of the parent quarkThe U_jow="F354 51’2”—2154'
momentumk; ranges under the integrals from Osto while g "+ pi(1.54

xs can reach @in the mass terms, the integrals are ower Sinceq*? is on the order ofz|, one obtains the result that if
andx). Appendixes B and C provide definitions of all vari- 2 vanishes faster thaq'2, i.e., faster thaxs, the potential
ables used in the description of the integrands. The key difproduces a finite effect in the limit af—0. In the denomi-
ficulty is that the ratio of two variables of different kinds: nators of Egs.(80) and (81) there also appears)?
andx, varies quickly with a change of any one of them. This : i
complexity is related to the power counting rules for the
Hamiltonian densities on the LR2]. But the analysis de-
scribed here concerns only the relative motion of the effec
tive particles and it is simplified by taking advantage of the
NR limit after the finiteness of the smalldynamics with the
gluon mass ansatz is established.

The singularity in the effective gluon exchange term is
tempered by the product of two vertex form factésThe
form factors vanish exponentially fast whe¢2/x5—>oo.
This preventss from becoming small unlesss vanishes at
least as fast as/xs. Therefore the measure of integration

(81)

=(2m2)?, which is negligible in comparison to the leading
terms on the order of but can be included here on the basis
of hindsight to take advantage of the NR nature of the
quarks’ motion with respect to each other. The larger is the
quark massm for fixed \q and the smaller is\q¢cp, the
more accurate the NR picture actually becomes after the
smallx divergences are removed. Writingp,=qt, with g
=|q|, t=cosh, the singular factor ¥ equals 4n%/q>
=(4m?/g?)t 2. The integration measur¥q is proportional

to g% and the smalk singularity is actually produced by the
angle integratiordt/t?. u? should vanish fot—0 in order

over transverse momenta is on the ordexefvhen xe—0 to remove the singularity. An example of such behavior is
o 5 used below to provide a constructive context for the steps

and it reduces the divergence (o a logarithmic one. The Iogafhat follow. The final result is not sensitive to the details of

rithmic divergence is taken care of using the gluon masg, example. Given thai? vanishes faster thag?, one can
ansatz. The mechanism of reducing singularities to onl rite ' '

logarithmic ones does not work in the instantaneous interac-
tiqn termZ_x(13,24) and in the terms %(13’24) that come w?(i,5,))=c?(i,5,))9% (82
without ff in F,, . But all the terms withouff are indepen-
dent of 42 and thedxs/xZ and dxs/xs singularities cancel and determine behavior afi,5,) from the condition that
out in them perturbatively16]. 0

: : , - c(i,5))

In the fermion self-interactions an analogous pattern of S(i,5))= )
the singularities occurs. But one has to also consider the size T 14c4(i,5))
of mj. The latter is determined by the size of the free
ultraviolet-finite part of the quark mass counterterm in the
initial Hamiltonian of Eq.(2). That size is related to an an-

satz for a gluon mass term in the sect{@s) andlag) in

(83

should vanish fox;— 0.
The only information about the three-particle sector that is

available in the relativistic construction dfandc(i ,5,)) are
(5lpei and + components of the momentq, ks, andk;.

the eigenvalue equations for states with quantum numbers hysical . din defini heloful
a single fermion; see Appendix C. Eventually, the gluon-[W0 physical constraints are used in defining a helpful vector

mass ansatz leads to the result that the single-quark eigefi- the definition must respect all kinematical LF symmetries
value diverges logarithmically in the limi#é—0, while the  (to render a boost-invariant description of quarkonand it
quark self-interaction in the quarkonium dynamics becomesnust reduce taj,=2mzfor z—0 when|Ky3/m and|K,4/m
finite. The self-interaction and effective gluon exchange,approach 0 in the NR limit. A geometrically motivated can-

both finite due to the chosen behavior of the gluon masgjigate forq is provided by the difference between the square
ansatz, lead together to the harmonic potential which is depf the free invariant mass of three effective particles in the

scribed in the next section. = . .
. . . state|QQg) and the square of the invariant mass of @
_ According to Appendix B, the dominant exchange '[ermspair in this state. The difference reads
in Eq. (70) read
K2+ x2M?
- - - ME—ME=—— (84)
v0(13,24 = 0(2)v + 10w+ O(—2)V _jow 79 X5(1=Xs)
~ B Multiplication by Xx5(1—xs) produces an expression that
wherev .oy is given in Eq.(B19), andv _,,, in Eq. (B20).  tends in the limit ofxs;—0 to the three-momentum transfer

In the limit x;—0, squared that appears in the energy denominators in the small-
x dynamics. The components cif are therefore defined as
) q‘=«s and
v = T, 5 -
row=hselsan o 500 q,=zM;; . (85)
Further analysis of all exchange terms shows that if the an-
and satz mass.? behaves like
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2 1t 5”_
X5

(86) V. QQ SCHRODINGER EQUATION

The condition(51) validates the NR and weak-coupling
(or like q x‘sﬂ) with 0<5,<1/2, the factors:~;+,OW of Egs. limits after the smallk divergences are removed by the gluon
(B19) and (B20) vanish in the limitxs—0 asx; % indepen- ~ Mass ansatz. This section then identifies the leading structure

dently of the terms in the energy denominators on the orde'tn Hqg in formal order ofa,. The additional simplification
32 n the case of smalk, is that the dominant interaction in Eq.

zalg’ Wcr)];r?maller Thus the gluon exchange term becomef.sg) becomes equal to the well-known Coulomb term and
one can find the leading correction analytically.
N Equation(59) can be re-written using the relative three-
c(i,5))=c(t) 87 momentum variables described in Appendix B; see(Ba).

. i The integration measure is
andc(t) is a function that behaves as

21,1 30
C(t)=C|t|5N/2, (88) dX24d k24= 4d k24 (92)
XXy My’
for t—0, with c a constant.
With this ansatz, the quark mass terms also become finitgnd Eq.(59) takes the form
in the limit 5—0. Appendix C shows details of homj is
chosen in agreement with the physical picture explained in 2 2
the Introduction and at the beginning of this section. Equa- 2, 2 omy oMy 2 i
: iction ang &t th® beglning - =4 A(m*+kig+ ——+———(2m+B)?|y(ky)
tion (78) givesmg+mi=m*+ ém{ with i=1,3 and 1 3
4 J e K1s,Kon) (Koq) =0. (93)
[£75) =VU.
f dx T 4012 (M2, M ?) (277)3\/m? +k§4 Kaa ko) Y kzs
M2—m? 1 1 The mass corrections include now tgg, terms that were
S M2—m2 MZ—m?] (B9 suppressed in the previous sectigim?= sm?+ sm;, and

the potential is

The functionM% is given by Eq.(C9) in terms of the gluon
mass functiom% that must satisfy the conditiofC10. The

X1X2X3X4
a5
X

quark self-energies are positive if Uiz koa) == 31504 ma 2
2(i,5))> ua. 90 ~ -
w151 > 1o 0 ><[a(z)vﬂow‘*'‘9(_2)07I0w]+vg )
A simple way to satisfy this condition is to sep=0. Then, (94)
4 Qo
Sm2= @ dx it £2 (m M 2) wherev, denotes the,, contribution in the exchange term.
32 Since the form factof 13 4 cuts off changes of the relative
o momenta abova , exponentially fast, one can focus on the
y (i"5,]) @) eigenstates with lowe$il? and take advantage of the condi-
W25 ]) + (k24 X2 (1—x) tions |k;g<m and |K,4<m that are satisfied in the entire

domain of physically relevant probability distribution. For

wherei=1 andj=3 or vice versa. The factons; are no  Such states, one can expand E3g) in powers ofk/m, with
longer needed. the exception of the form factors that are needed for conver-
The smallx regularization disappears from the quarko- 9€nce. The Coulomb force defines the momentum scale of
nium dynamics entirely. Finite phenomenological parameterghe inverse of the quarkonium Bohr radiukg=rg*
that describe the smat-behavior of the gluon mass ansatz, = @oM/2. Whenko>kg, the form factorf ;3 5, does not dif-
such ass,, in Eq. (86), become responsible for the regular- fer from 1 in the dynamically dominant regiofys o, matters
ization of the exchange and self-interaction terms, preservingnly when one extends the expansion to high powekd o
their distinct properties. The mass terms grow wiégnde- ~ These would lead to divergent integrals with Coulomb wave
creases, while the effective gluon exchange potential profunctions and require counterteri®,51]. The latter are not
vides a negative contribution that increases in magnitude ateeded here and the lowest terms domifiaf The binding
similar rate and compensates the size of the masses at smafiergyB is small in comparison ton. Writing the quarko-
momentum transfers. The net result is described in the nextium mass asM=2m+B and neglecting~B?/m, one
section. obtains
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K2,  om? sm? . f(1-fH)[(g.0)+(n,0+2]
_ _+ E—
2m " 2m "8 +H(F[(9,0+(g,1)~ (9.0 +(n,p)+2]. (99
d3kyy o R Th S . . . .
+ Voer(Keae K ko) =0. 95 e contribution of f,0)+ z in the first term vanishes in the
J (2m)3 QQlkis™ ke ¥(Kzd) ©9 leading NR limit; see Appendix B. Two of the terms with

(9,0) combine tof(g,0), and reduce to the Coulomb term
The structure oV and the size of the mass corrections With the Breit-Fermi spin corrections. The remaining terms,

sm? and sm2 need explanation. with f in front also being equivalent to 1,
The two vertex form factors that appear inside the ex-
change and mass terms in E§9), have arguments given in f(fHL(9,x)— (9,0 +(n,u) +2], (99)

Appendix B in Eqs(B8)—(B13). When one writes the prod- .
uct of the two vertex form factors in the NR limit as @dd to the Coulomb term and produce togetigg, in Eq.
exp(—u?), u reads (101). The mass terms can be re-written, in the same fashion,
as
m 1
U=\ (96 (ff)om?(9,0)~ (g,p) +(n,O~(n,w)]. (100

Expressiong99) and (100 show that the exchange potential
The limit m/Ao>1 enforcesg<\,, the more so the smaller and the mass terms have similar structures with opposite
is t. The Coulomb blndlng mechanism is intact fbﬁ as signs. A change of variables fromand k1 to g,=Xxm and
small as several timés; [35], which is much smaller tham g = ! in the mass terms produces integrals in which the
in the weak-coupling limit. Thus the momentum trangfés factor ff ensures thaq=|ﬁ|<m and one can again use the
much smaller thakg in all terms that contaiff. These terms expansion in powers of the ratio af/m. Since the inte-
become then negligible in comparison to the Coulomb term rands are symmetric functions gf, one can extend the

unless they have singularly small denominator factors fointegration to negative;, and divide the result by 2, which

smallt. That is the case for the mass and eXChange.termﬁroduces the same integrands as in the exchange terms.
when 5, becomes small. In the presence of thg, contri- Hence

butions that were omitted in Sec. |V, these terms are found as
follows. - - -
The HamiltonianH g has the structure Vqq(a)=(1+BF)Vc(aq)+W(q), (101)

Hog= m24 Sm2(Ff,g+n,0)— SMA(Ff,g+n, ) whereBF denotes the Breit-Fermi spin-dependent factors,

+f(1-1f)[(g+n,00+z]+f(ff)[(g+n,u)+Z], " 447ma
97 c(a) 3 ¢
(102
whereg denotes theg,,, terms,n denotes the singular,n,
terms, andz denotes the instantaneous terms. The gluon mass . 4 1 1] w? me?\ 2
ansatz in energy denominators is indicated by an extra vari- W(Q) = z4ma| =~ — ﬁeXF{ —2( Az) }
able in the brackets, and 0 says that the gluon mass is 0. Note 9% Gzjutq fzMo 1
the difference between the last two terms in E®j7). The (103
line with f(1—ff) comes from the perturbative RGEP and . 2 5 2
has no gluon mass in it, while the line witt{ff) comes with u”= 6(2) u*(2,5,3)+ 6( = 2) u(1,5,4), and
from the exchange of effective gluons, its part—(f)(ff) 9 3
being negligible, and it does involve the gluon mass ansatz in 5&: _ J d“q W(ﬁ) (104)
denominators. This difference is important because the next m (2m)3 '

steps will show that the exchange terms with the gluon mass

ansatz are relevant only to the spin-independent harmoniwith ©? equal u?(1’,5',3) fori=1 and x?(1,5,3') for i
oscillator force that comes from the smaltegion, while the  =3.

Coulomb interaction will remain unchanged, i.e., not modi- If the gluon mass ansatz is =0 and the quarkonium
fied to a Yukawa interaction that one normally associateslynamics reduces to the same as in QED with additional
with a regular exchange of massive bosons. This happermlor charge factor 4/3. A finite gluon mass ansatz introduces
because the mass ansatz enters only in the terms with factanew dynamics which is discussed in the remaining part of
ff, and these are able to produce a significant contributiomhis section.

only if they contain also factors that are singular in the small- W is large and negative whe#), is small. The exchange

x region, while the Coulomb term is regular there and comeserm tends to compensate the positive contribution of the
mainly from 1 in the perturbative term-1ff, remaining mass terms. This can be made transparent by re-writing Eq.
unmodified. The last two terms can be re-arranged as (95) as
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K2 ) d3q o The function7(t) depends o in a limited way because the
——B|y(k)+ J ﬁ(l+ BF)Vc(q)y(k—Qq) integral overu in Eq. (110 extends only from O to about 1,
m (2m) b/t is large, ancou/t>1 producesr(t)=p,
d3 - L. .
+ [ G W@THK=)- (k] =0. (109 p=\ml4 (113

The behavior ofr(t) neart=0 does not matter because of
There is no need to trace the small relativistic correctionghe factort in Eq. (112), and the conditior(86) is of little
before the main NR picture is identified. Only this picture is consequence if.? raises quickly from 0 at=0. For any

discussed below. ansatz of Eq(88) with a small§,,,

Since|q| in Wis constrained to values much smaller than 5
kg, one can expand the wave function in the Coulomb re- (t) = c(t) B (114
gion under the integral in the Taylor series and consider the 1+c%(t) "

lowest terms as candidates for the first approximation,
which is equivalent to the consta@ if c(t)>1 for t+#0.

. - . | 92 . The factorization feature is independent of the shape of the
Pk=q)=g(K) = ai o - (K + 50410 — (k) + - - - RGEP form factorf and provides an opportunity to fit
! o (106) analytically to satisfy Eq(112. Suppose that Eq@88) is
valid and
The terms with odd powers af average to 0. The bilinear c(t)
terms containg? times (1—t2) times co$ ¢, or sirf ¢, for mzcztéﬂ(l—ptz). (115
i=j=1,2, respectively, antf, fori=3. The integral ovetp
producesm times a vector Equation(112) is satisfied when
w(t)=(1-1%1-1t%2t?). (107 p=05,(8+5,)/(2+5,), (116

The variableq can be changed to of Eq. (96), and intro-  and

ducing the constant
g c2tou(1— pt?)

ci(t)= (117
V2m 1—c?to(1—pt?
b=—=7" (108 (=et)
0 leads to a rotationally symmetric harmonic oscillator poten-
one obtains the vector tial. All components ofr are equalr,
~ 1 »p
- 1 - = 2 - =
rzj dtt(1—t?)w(t)7(t), (109 T=pC (6 12)- (118
0

p varies between 0 and 17/25 whep varies between 0 and
(bult)?u? ot 1/2 in accord with Eq(86). In the limit 5,—0, p—0 and
()= f du Ybut?+u2® (110 ¢2(ty~c?/(1-c?) outside the area of very small In this
example, the size of the coefficient function§,5,)) de-
pends on the size of the constardnd grows to large values
whenc—1.
4 Every gluon mass ansajz’ that is large outside the area
Woo=— 5 —b73> 5. (11  of smallt and vanishes abruptly fdr—0 leads to a spheri-
32w~ =10k cally symmetric harmonic oscillator potential with the spring
constant
The next nonvanishing terms in the Taylor expansion contain
the fourth and higher even powersﬁ:fThey are expected to K= f bez; (119
be small in the momentum region dominated by the Cou- 3w '
lomb dynamics and do not count around the bottom of the
harmonic potential. The remaining question is if the har-and
monic approximation can be rotationally symmetric. ~
The interactionWgg given by Eq.(111) is rotationally 7~ Bl6. (120
symmetric when all components ofare equal, or

that appears in the resulting interaction term:

The numberB depends on the shape of the RGEP form fac-
L tor f, which reflects the dependence of the effective dynamics
f dtt(1—12)(1—3t?) 7(t)=0. (112 On the RG scheme, byl is stable forf ,,s of similar shapes

0 as functions ofab/\?; see Eq(24).
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The first approximation for heavy quarkonium dynamicsand re-absorption, and exchange, are limited in the region of
in position space can be defined by the Fourier transform ok~0 by how the gluons and quarks interact. This in turn is

the eigenvalue equation fétqg, with contained in the parameters of the mass ansatz for the effec-
. . tive gluons that move near the pair of quarks. These param-
(r|k)=expikr). (121)  eters limitx long befores can matter. But the ansatz param-

) . . ) ) . eters turn out to be irrelevant for the final equation too,
This transform exists only in the relative motion variables,pecause what counts fornear 0 is a competition between
since the motion of the quarkonium as a whole is describe¢iow quarks self-interact and how they exchange effective
in a relativistic fashion and the relation between the relativeyluyons. The result of this competition depends on the gluon
motion of quarks and the motion of the bound state as ajispersion relation. But as long as the latter has the structure
whole does not coincide for large speeds with the one known, 2/x with nonzerou?, the details ofu? are secondary to the

in NR theory. The Schidinger equation reads fact thatu?/x is large and thaf, modulates the interactions
A dall K as for massless gluons and quite independently of the gluon
[Zm——r— 2 L BE +—r2}¢/x(F)=M¢(F), mass ansatz. The result of this modulation provides Egs.
3 2 (122 and (123.
(122 Thus, although there is nb, written explicitly in Eq.

(122), the result is a consequence of the correlations implied
by f, in the dynamics described by, . These correlations
) become transparent after the energy of effective gluons is
0= /f E)\(£> ‘ /i (123 parametrized using the concept of a mass. Note, however,
37 \m 62 that the ansatz is introduced according to Ekj, and thus
serves only to finesse the result that should be independent of
The numbef B/(6+2)]Y2 gives (m/1152)¥4~0.23, whichis 2 almost entirely for the true value of the coupling constant
large enough for the frequeney to fit into the ball park of « at As for which the state with two effective quarks ap-
phenomenologically plausible scales when one allows suffiproximates the full solution well. In this region, one should
ciently largex and « with some choice fom. The observed also expect thatr and m depend on\ in such a way that
spectrum of charmonium is known to have an intermediatesolutions for the spectrum do not depend »n Unfortu-
character between the Coulomb and harmonic oscillatonately, this range cannot be estimated theoretically at the
spectra. But the key problem is to determine the size andurrent level of approximation, and fourth-order terms are
direction of corrections that need to be included in order tarequired to shed more light on the issue. Nevertheless, one
compare the theory with data. The inclusion of light quarksshould keep in mind that the paramegdepends somewhat
requires quantitative understanding of the mechanism of chien the function chosen fdr, and its value given in Eq113)
ral symmetry breaking in the effective particle approach ands only a good estimate of the result for a whole class of
a comprehensive phenomenological analysis demands fusimilar functions.
ther advance in the theory.
With this reservation taken for granted, the simplicity and
physically appealing content of Eq&l22) and (123), espe-
cially the otherwise hard to explain quantum-mechanical ef- The Coulomb interaction between quarks in heavy
fect of binding above the threshold ofi2 deserve a clear quarkonia is corrected by the potential well that is excavated
summary of their apparent dependencehoand no depen- by the one effective gluon exchange in the overlapping self-
dence on the regularizations introduced in the initial Hamil-interaction gluon clouds of the quarks. At the bottom, the
tonian. The effective dynamics éf, , and thus alstigg for  well shape is a quadratic function of the distance between the
A=\, is not sensitive to the factors, because the RGEP quarks. The resulting harmonic oscillator force plays the role
equations produckl, near the end of the RG evolution they of a confining one in a limited range. At distances much
describe, and this is independent of the starting point at larger than the Bohr radius the quadratic approximation stops
= where the regularization and corresponding counterworking. Emission of additional gluons and pairs of light
terms are inserted in the QCD bare Hamiltonian. The factjuarks will further change the rate of growth of the potential.
that Hyg emerges as independent of the smxategulariza-  The size of these effects should be computable in the present
tion factorsr s in the initial Hamiltonian is of different origin  approach by evaluating effective Hamiltonians order by or-
and follows from the color singlet nature of the quarkoniumder in a weak-coupling expansion and solving eigenvalue
state. In the colorless state, effective quarks and gluons irproblems for them numerically.
teract in a way that is no longer sensitive to the cutoff on The effective particle approach is of interest because it
gluon x at x~ & because the quark and antiquark are toodescribes the relative motion of quarks independently of the
close to each other to produce a long-range interaction aspeed of the quarkonium as a whole. This result is obtained
sufficient strength to introduce sensitivity to the smaltut-  at the price of setting up QCD in its Hamiltonian version in
off. In this situation, however, one may wonder what param-LF dynamics, with a host of difficulties in the renormaliza-
eter is actually replacing in controlling the x-dependent tion program that had to be overcome. Further advances in
factors, and why no such parameter is visible in E422)  the RGEP and methods of solving the eigenvalue equations
and (123. The answer is that the effective gluon emissionfor HamiltoniansH, are expected to reflect the well-known

wherek=mw?/2, and

VI. CONCLUSION
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features of interactions of relativistic particles. The first ap-where A= A%t3, [t3,t°]=if2*%¢, and Trtt")=52%/2. The
proximation forHqgg can be expected to work well in the classical Nether generator of evolutionxn takes the form
refined calculations because it appears to be largely indepeithe Gauss law constraint is formally solvedAri =0 gauge
dent in its structure from the details of the RGEP vertex formand the counterterms are added as the last term from hind-
factors and the gluon mass ansatz. The first approximatiosight,
also appears to involve the least possible degree of complex-
ity asa basis around which a meaningful successive gpproxi- H=Hj2+Hp2+Hps+Has+Hyay+ Hyany+ Hpoan2
mation scheme can emerge. A few percent accuracy in evalu-
ating effective Hamiltonians is known to be achievable using +Hpaaawy) T Hp2t Has, (A4)
essentially the same method in the case of elementary matrix
models with asymptotic freedom and bound states. where each term is an integral over the LF hyperplane,
Since the approach developed here is boost invariant, it
can connect physical images of hadrons in different frames
as soon as the hadron dynamics is understood in one of them.
Although the light quarks are expected to behave differently
from the heavy ones, one should note that the Stihger 5,
equation withH, does not lead to the spread of probability
towards large relative momenta and large numbers of effec-
tive particles. The spread is halted because the interaction H yo= gyt
terms inH, contain form factors. These form factors are the 2 ig"
reason for hope that the effective particle expansion may
converge. 1
Aside from QCD, the same scheme for setting up and H p2=— EAL(ai)zAi, (A7)
solving quantum field theory should be tested in the case of
QED. There, the effective mass ansatz for virtual photons is
much more restricted and smalleffects are of less signifi- H a3=0gid, AFA%APT, (A8)
cance. On the other hand, QED is not asymptotically free
and its effective nature requires better understanding. The 1
RGEP approach may help in defining QED as an effective H ps=— Zgz[Aa,Ag]a[AaaAﬁ]a, (A9)
theory. But one needs to first verify if perturbation theory
with H, can produce covariar-matrix in QED in orders _
higher than second. Hyny=99AY, (A10)

Hi=J dx~ dx*t H;, (A5)

¥, (AB)

N
APPENDIX A: REGULARIZED LF HAMILTONIAN 1y
OF QCD Hynny= 597 A =AY, (A11)

The canonical LF Hamiltonians of gauge theories, similar 1
to the Hamiltonians in the infinite momentum frarf@8— — Z a2l 9t Al al7a P9t AL pl7a
70], are well known[71,72, and extensive literature exists Honnz= 597110 AC A7 (i&*)Z[m ALATT,
on the lightlike axial gaugels’3,74]. The Hamiltonian given (A12)
below is further specified by inclusion of the ultraviolet and
smallx regularization factors that render a computable op- _ 1
erator. This means th& does not require a separate regu- H[aAA](¢¢)292¢7+ta¢(i{9+)z[i5+Al,Ai]a,
larization prescription for evaluating loop integrals. The (A13)
same regularized Hamiltonian was used in R82] but the
quark terms needed here were not explicitly given thidris. 1
supplied with countertermbl, 5. Their structure is known Hgpy2= _92J7+tal/,
from considerations similar to Rdi2]. Details can be calcu- 2
lated using RGEP. The initial Lagrangian is

1

g mz%*taw. (A14)

A quantum Hamiltonian is introduced by expanding the
L=g(iD—m)y— L Frrape | (A1) fields into Fourier components at =0 and imposing com-
mutation relations on the latter. They define creation and

with one flavor of quarks of mass annihilation operators for bare particles.

Fer=—ilp%D g, (A2) =2 | IKI XeUkoDierc® "+ ot 1o lpe€™].
oC
and (A15)
D,=d,tigA,, (A3) The integration measure is
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A(kt)ktd?k- are again only a shorthand notation for writing interactions.
(K= 63 (A16)  The independent transverse fidd contains only polariza-

tion vectorse . that have dimension 1A' has dimension of
+ T k*2a, which matches the requiredxt/ on the LF[2] when
Broe By grer} ={dkoc Ao} a~1/k', as promised.
— 167k 8, 8o 3(k—K'). (AL7) The kinetic energy operator for quarkd,,, is given in
7 Eq. (3), and for gluonsH »2, is given in Eq.(4). The triple-

| int ti d
S(k—K')=5(k" —k' )8k — k') 5(k2—Kk'?). The cre- O o0 Neractionreads

ation and annihilation operators have the power-counting di-

mension ' (the same result holds for gluons; see below HA3=2 f [123]8(pT—p)r,s(3,1)
The spinors are given byu,,=B(k,m)u, and vy, 123

=B(k,m)v,, wherev,=Cu*=iy?u* . u, andv, are the
spinors for the fermions at rest in the arbitrarily chosen frame
of reference where the quantization procedure is introducedy,, symbols introduced in this operator occur in all other
The mgtrle(k,m) represents the _LF boost that tums a par-eymg ang require explanation for completeness; see also Ref.
ticle with massm at rest to a moving one that has the mo- 3] The conservation of momentum in the interaction ver-

2_ 2
mentumk, k*=m®, tices is enforced by the factor

x[gY@lalas+gYialama;l. (A24)

B(k,m)= %[A+k++1\_(m+ ktat)], (A18) S(pT—p)=16m35°
m

o

whereA . = yoy~/2. This matrix mixesk” with mandk®.  The regularization factors are given by
But the second term, of the typé"/k™ when one countm
andk* as similar, results only from writing the interaction T d)=r dr —d A26
terms in a way that is short and convenient in calculations. 25(P. ) =as(pA)ras(p.p—d), (A26)
The independent degrees of freedoth, = A, ¢, contain
only the parts proportional tgk*/m. Thus ., has the di-
mension ofk2\k b, which in the position space on the LF Fas(pod) =1 (k2

i P, d)=ra(kg/p)T 5(Xarp) O(Xarp)- (A27)
leads to &* \/x_‘)‘1 [2] if b~1/k". The spinors at rest are 8 A% Rarp/T 2l a/p

2 pa—% pa} (A25)

where

The symbolp refers to the parent momentuthalf of the

| Xe sum of all momenta of all particles coupled in a vejteand
Uo=\2m 0l (A19) d to the daughter particle momentum, i.e., the momentum of
the particle emitted or absorbed in the vertex. The arguments
0 of the regularization factors are defined by
Vp= \/Zm[ } (A20) B . .
. B ' PR
whereé¢_,=—io,x,=0ox_,. The gluon field ak™=0 is Xd/pzk;/k;EXd/Xp_ (A29)
AL="D f [KI[t°el ay,ce W+ tef*al ek, The functions used here af82]
oC
(A21) ra(kt?)=exd — k2/A?], (A30)
and the commutation relations read Fo(X)= 0(x— €)x°, (A31)

T _ ’
[Bkoe Brgrer 1= 16m°k " 50(’,5&’ B(k—k'). (A22) and e/ 6 tends to 0 wherd— 0. The gluon spin vertex factor

reads
a anda' have the dimension &f. The polarization four-
vectors are introduced using LF boosts as for fermions, , . % . , 1
Ypa=ifC192%| g 65 -3k~ €3 €3 K
2/3
el =(ep =0, =2k eLlk™ &), (A23) .
. o —e3ez 8] K—|. A32
except that the boosts are applied to the polarization vectors #2831 Kx1,3 (A32)

eh= (0,0ai) that correspond to the selected state of a gluon
moving along thez axis [12]. Terms that contain the ratio The simplified notation means=g", k=«7,3. The quartic
k*/k™, which mix the transverse and longitudinal momenta,gluon vertex is
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- 9’ _
Hae= >, f [12343(p"— p)—-[E aarzaid]ajala,
{734 4

tof = T

+ Xa412321828385 T E pa13R433381 ], (A33)
where
—_ _ > s * ko * * * %
:A41234—§[r1+2,1|'4,3(8183'8284_8184'8283)

X faClCZfaC3C4

- - * % * * * %

Trivsladeres e384 €164 8583)

5 §aC1C3facCy

- - * % * * * %

+r3io3a1(e183 8364 €38478587)

X facstafaciCa] (A34)

_7 - * * * *
Xat1235= M 11210314 3(E183° 8284~ 81 84785 €3)

% faC1C2§aC3Cy

+raroatrigaol(eles e3e4— T84 85€3)

X f aC1C3f acoCy

Hrad1atrogdanl(eles e384~ €le3-€584)

(A35)

% faC1C4faCCT

The abbreviated notation for the regularization factors is
Tpa=Tas(p.d). Denoting t§=yx/t?;c, the quark-gluon

coupling is given by

PHYSICAL REVIEW D 69, 065002 (2004

Huny= 3, [ [12303(0" - 00z stialos

—vaéfvotgdialds+usésuotibidias+H.cl,

(A36)
where the spin vertex factors are
Uz'é US_\/X3/X2X2 i(kae17)%0°
X+ X3
X, Kuset ois“ *lxs. (A37)
L i T i L 3.3 X2t X3 1 %1
U3éll)2= X3/X2§_3 _|(K1/38 ) + K71/3€1
_ ﬁ 3 * 1
mgx g O'LSJ_ 572, (A38)
3
Ulésv2=vx3/x1vx3/><zx1 —i(kyee3)’
X177 X2
T KUesoMiotes |, (A39)

The instantaneous fermion interaction reads

Hyaas= 2 | [12348(p"—p)(92/2)2x1x4- {1,
1234
(A40)

where the curly bracket§} contain the operators ordered
according to the ruld'd’a’adb;

{}:?1+2,1?3+4,3[tﬁ%b agby+ tza%d 2d1}
+[?1’2?4’3_'_?2’1?3’4][,[%2)(1)5 ]X4b Tayb,+ tzsz al _X]§_4d1a£a3d1
+ _?3 Fii2 1@% bidjajas+H.c.|+|To 54 3@2% bidjaja,+H.c.
+ :%([r12r34+r2 ;r'43]t23&+[r13r24+r3 F4ﬂt32%) bidjazas+H.c.
N % (? Freo 1t13X1[X2*+3: Ixa FoFroad 1‘21X1[X *+)’:]X4> blalalb,+ H.c.
+ %(?1 2.|:3+4 4@3ng [XZ*_3;2]§—4 ?1,3?2+4,4ti21§T1[:1*_2;3]5—_4 dZa§a§d1+ H.c.|. (A41)
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The symbols meant X.ctatbxjc, and [aB]=¢, gﬁ
+i(eyXe5)%>. The star * means that the corresponding
polanza‘uon vector is complex conjugated:#=*. The quar-
tic gluon term with derivative reads

Hioan2= 122;)4 J’ [1234/8(p"— p)g?[ (Esan2123@]85a%a,
+H.c)+ X saap2 123@ialaga,], (A42)

where

1|~

= _ = I * k%
E0AA121234~ 6 l14+21M43€182 €3€4

(X1 X2) (X3+Xg)

faClCZf aczCy
(X1 %)

- - * % *
trii31Ma286183°8284

(X1—=X3) (X2 +X4)

aC1C3f acpCy
>—f
(X1+X3)

- - * % *
tr3423418382 8184

(X3—X2) (X1 +X4)

acsCyfaciCy
(Xa+Xyp)? e ' +8I82ﬁz[(r2 TagtTid30E 3¢ sdialads
(A43) e
—(ToaT 3.4+ 1 29 X5 xablalash ]+ H.c. (A46)
1|~ -
_ = * K
Xionn21234= 7| F1+21 3+438182 8384 Finally, the instantaneous gluon interaction between quarks
reads
(Xlz ij_( XS); X4) faciCfacscy
Xl X2 2
~ g
e Moo= 3, | 11234300~ S axxonal),
—[raaroatriFasleles eses 1234
(A47)
(X1+X3)(X2‘2FX4) facicspacscy
(X2—Xg4) where the bracket§ contain
1 xIx2xixa X3X2X1X4
U=-5 (X_—X)z?zt 4[r12r43+r21r34] ﬁtazt 4[r32r4l+r23r14] b b! 3o,
1 €856 187 ,¢ 5 €58 58,6
+35 2 (X—X)t21t43[r1 2r4 3+r2 1r34]— (X—X)tzst4][r3 2"4 1+r23r14] d d} 3dod,
1~ X2 3~
T Tt 3 T
X1X2X30 €4 ~ o~ X3X2X1 f 4
+( O(—X)ztiztg4r2,1r3+4,3_ (X—X)t32t14r23|’1+4 11b bidib,+H. C)
17 X2 37 X2
T 3 T Tt .3 T
X10°6 2E-4€ 3 ~ o~ X10°€ 3E-4€ 5 ~ o~
_( (X+—X)2t6112t23r4,3r1+2,1_ Wti3t22r4’2r1+3’1 bId;d;d‘l‘f‘ HC
1+ X2 11Xz
T 3 T 3
X1X2§ 463 (7 §-38140°x2 ~ ~
— 2=t T ast T, Ir34lbid} d4b2+2 2 S 1130 242 0103dsby.  (A48)
(X1—X)? (X1+X3)
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-~ 7 - 7 * *
—[r3diatrodaileies eses

><(x2+ X3)(X1+Xy4)

faciCafacyCy|
(X1— X4)2

(A44)

The instantaneous gluon interaction between quarks and glu-

ons reads

H[aAA](ww):];Mf [1234/5(p"— p)g?if21243,2VxaXal},
(Ad5)

where the bracket§ contain
{l=ele3 m[ru 243+ 438" 30°xsalajdsby

- 7 T 1P PN - 7 T ToTaT
+ 124 a3x3xab3218,04— 114513467 36 40 a785d5]

X1t Xo ~ ~

*

—gle,———I r o b Tala
12(X+X)23+4321X3 54 4d1d?

X1+ Xz
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Useful color identities aret?t®t®=—t3/(2N,), t3P+1tPt?
= 6/N +d3P%°,  d*PedPI=[(NZ—1)/N 5%, faPPe
=i (N/2)t2.

APPENDIX B: Q,Q, INTERACTION

Several factors are needed to estimate the smbéhav-

ior of the potential kernely(13,24) in Eq.(71). Momenta
are labeled according to Figs. 1 and 2.

F1320= X — (M §5= M39%INY, (B1)
where
ME=a(m?+k;|?)
_ st ©2)
XiX;
with
ki = K | (B3)
ki =(x =1/ Mj , (B4)
M= M= 4(Kist ka0, (B5)
where
q=Kyz—Kaa, (B6)
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X
2 _ 273
Miz,—m x3+zD3’ (B12)
and
MZ—m?=D,. (B13

The last term in Eq(71) can be written with the coefficient
1=(1—"fy304+f1324 but only the second term counts at
smallz because (% f,3,,) is proportional to the momentum
transfer squared. The factdgs,, becomes common to all
terms in Eq.(71) and is taken out in front. The LF instanta-
neous term can be split into the pdftthat joins the low-
energy exchange and-1ff that goes with the high-energy
exchange. This way one obtains

12 2 =2 =2
K1z3tmg mp  mg S~
———+ —+ — M| y(k13,Xq)

X1X3 X1 X3
4a/j X1X3f13 24~ ~
— —— | dx, d?kau\/ —— 0 (13,24 Y k54, X5)
2 2 24 0 ’ 24182
37 XoXy Xg
=0, (B14)
where

vo(13,24 = 9(2)?5/1?5/4(;+high+;+low)
+6(— Z)?S/?:FS/Z(;—high+;—low)- (B15

The gluon mass ansatz contributes to the low-energy ex-

is the momentum transfer that goes over to the standard orghange terms only. In terms of the invariant masses from

in the NR limit,

2kt — g2 z(1—2x,+ )M 2,

2 g2 _
Mg~ Maa (X1—2)(X3+2)

(B7)

In the last term in Eq(71), the form factorsf; s,fs3 4 have
arguments

X
M mi= - D1, (B8)
where
2
X1l % 2|Z|
= — _ —+ —_—
D, |Z| (q X1K13 m X, (B9)
and,
MZ—m?=Dj, (B10)
where
2
X 2 212
D3—|Z| +X3K13 +m X (B11)

while the form factors ; 54 5, , have the arguments

Egs.(B8)—(B13),

~ fl,52f 53,4 1
Uthigh™ 7 o5
y Xi+x; (ME—m)(MEG-—m’)
XXa (ME—m?)2+(ME—m»)?2 )’
(B16)
~ . fasdfs1o-1
U—high—T
X5+x5  (ME—mA)(MG-m?)
XsXa (ME—m?)2+(ME—m?)2 |

(B17)

These have the same limit when-0 for fixed g*,

lim U +high™ limov —high
z—0 z—0

_Tasdfsnoml X1 X3 (9 — ki9)?— ki2
2 X1 X3(X3+X3) 2
+o(z). (B19)
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The terms on the order af? and higher are finite when distances and does not continue to generate gluons over in-
divided by the square ofs=|z|. Terms linear inz produce finite distances along the LF. This scenario is partly similar
an integral convergent in the sense of principal vaRié6].  to the one originally developed in the LF dynamics in Refs.
Wheng* ~z—0, d?«3, removes one power affrom the  [42,43, and studied in Refd44,45. The main differences
denominator in Eq(70), WhileZJrhigh vanish forz—0. The are rglated t_o_the fact _that the phy_5|cal picture that emerges
contributions of ... are EZ/&Z times smaller than the here in the finite effective th(_aory with the gluon mass ansatz
domi *high . . . . __relies on the phenomenological parametgr A formal cut-
ominant terms and can be ignored in the first approxima- + . .
) ) ) ~ ) off parameteré™ of the canonical theory, the coupling co-
tion. One can see this by integrating nign With a Coulomb  herence phenomenon that may work over many scales of an

wave function. ultraviolet cutoff, and the condition of transverse locality are
The low-energy terms read not employed in the new picture. Instead, the present sce-
nario can be studied in higher orders of perturbation theory
~ f155534 (ME—m?)Ix,— 1n?(2,5,3)/xs according to the known ruld80,32 that explicitly preserve
v = - i i iti
+low 4 (M éz— m2)/x, + u2(2,5,3)/%s the boost invariance, cluster decomposition property, and

unitary connection with the initial theory.
The eigenstate df-l)\o with a single quark quantum num-

, (B19)  bers and momenturp with component ™ andp* has the
eigenvalue

(M2~ m?)Ix,— u(2,5,3)/xs
(M Z—m?)/x,+ u?(2,5,3)/xs

- fasdors  (ME—mP)x— u2(1,5,49/xs p-=(p*?+m’)/p*, (&)

U—low™ 4

(ME=m?)/x3+ u?(1,5,4)/Xs and the decomposition in the effective particle basis,
[P)=1Qx) Q)+ (C2

The new gluon mass ansatz is introduced in the quark-gluon
component. It is different than in the quarkonium case be-
APPENDIX C: MASS TERMS cause the states have different quantum numbers and are
made of different numbers of effective particles. Dropping
The mass terms with=1,3 in the eigenvalue EqB14)  the subscript, as in Eq.(54), the eigenvalue problem is
are given in Eq(89), with M 2 given in Eq.(63) andM3in  written as
Eq. (65). mS originates from Eq(28) with A=X\,. Namely,

(ME,—m?)/x3— u?(1,5,4)/%s
(ME—m?)/x,+ pn?(1,5,4)/xs

. (B20)

the quark mass countertermof Eq. (2) addsém3 s to the (Tq+Ty)|Q9)+Y|Q)=E|QQ),
original mass parametem? in Eq. (3) and the free
ultraviolet-finite part of the counterterm is such tima§ ap- Y|Qg)+Tq|Q)=E[Q). (C3)

pears in Eq(70). The condition ormg that the eigenstates of

H),, with quantum numbers of a single quark have eigenval-The new ansatz enters through the kinetic endrgywhich

ues growing to infinity is fulfilled below by representing contains

gluon interactions in the case of the single quark state by a
new gluon mass ansatz. The resulting valuengfenters into

the quarkonium dynamics. The determination of the n . . .
X - . wherex and «— refer to the relative motion of the effective
ultraviolet-finite part of the mass countertermXrin Eq. (2) )
gluon with respect to the quark. The operak®ifrom Eq.

is thus based on the picture that comes out from simulta® ~ " A )
neous consideration of two eigenvalue equations, one for th@?) iS now replaced by the one witR that projects on the
state with quantum numbers of a single quéok an anti- single effective quark basis state with kinematical momen-

quark, the result is the sameand another one for the tum componentp™ andp*. In the perturbative expansion in
quarkonium. The key physical assumption made in the com@ ©nly the second term onzthe right-hand side of Eed)
parison is that the binding of effective quarks in the quarko-Contributes in orders up tg®. Thanks to the boost invari-
nium state occurs at the expense of change in their individugtnce, the resulting eigenvalue condition reduces to an equa-
structure. While the buildup of self-interacting clouds of glu- tion for m?, which is independent o,

ons around single quarks leads to the infinite quark masses,

in the case of a colorless pair the main parts of the gluon M2=m2— ﬂf dx Pt T 2(x)

clouds can recombine into a colorless object that may fly out 0 372 o

of the region of strong interaction with the quarks, leaving

By = h(x ), (C4)

behind only the minimal remnants of the gluon clouds re- X 2 (m? Mz)i M?—m? (C5)
quired to form the quarkonium eigenstate with a finite mass. Mot x? Mé—mz’

The new finite balance is described using the gluon mass

ansatz parameted,. The finite balance can be achieved Mé:[KLZ'f‘ILLZQ(X,Kl)]/X"‘(KLZ‘F m?)/(1—Xx).
because the quark-antiquark state looks neutral from large (Co)
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For m? to be positive and growing to infinity wheéi—0,
one can Writemé in the integral form,

4a0 B 1 MZ_mZ
ma=m?+ ﬁj dx dZKLrg(X)fio(mzyMz)X_ZMg_mz’
(C7)

with some functionM 3 that satisfies the condition
ME>MG>m?, (C8)
This condition can be satisfied by writing

ME=[ k24 p2(x, k) Ix+ (K-2+m?)/(1—x), (C9)

PHYSICAL REVIEW D 69, 065002 (2004

and assuming that

/.L(23>,u,(2)>0. (C10

As long as the differenced— g does not vanish fox

—0, the single quark mass will tend to when 6—0. But

this may easily happen here because the larger is the gluon
mass ansatpé, the stronger the single quark mass eigen-
value diverges in the limiv—0, while ,u(z) remains free to
vanish in the limitx—0 and lead to a finite mass contribu-
tion in the quarkonium dynamics. Using E&7) for mS one
obtains Eq(89).
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