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Harmonic oscillator force between heavy quarks
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A renormalization-group procedure for effective particles is applied to quantum chromodynamics of one
flavor of quarks with a large massm in order to calculate light-front Hamiltonians for heavy quarkoniaHl

using perturbative expansion in the coupling constantal . l is the renormalization-group parameter with the
interpretation of an inverse of the spatial size of the color charge distribution in the effective quarks and gluons.
The eigenvalue equation forHl couples quark-antiquark states with sectors of a larger number of constituents.
The coupling to states with more than one effective gluon, and interactions in the quark-antiquark-gluon sector,
are removed at the price of introducing an ansatz for the gluon massm2. The simplified equation is used to
evaluate a new Hamiltonian of orderal that acts only in the effective quark-antiquark sector and in the
nonrelativistic limit turns out to contain the Coulomb term with Breit-Fermi corrections and a spin-independent
harmonic oscillator term with a frequencyv5@(4/3)(al /p)#1/2l(l/m)2(p/1152)1/4. The latter originates
from the hole excavated in the overlapping quark self-interaction gluon clouds by the exchange of effective
gluons between the quarks. The new term is largely independent of the details ofm2 and in principle can fit into
the ballpark of phenomenology. The first approximation can be improved by including more terms inHl and
solving the eigenvalue equations numerically.

DOI: 10.1103/PhysRevD.69.065002 PACS number~s!: 11.10.Gh, 12.39.Hg
th

e
n
ve
rs
no
c

om
fo

or
e
o

ri

t
ive
h
fo
he

itu
a

n
w

s
n
n

can
rent
y
in-
by

li-
ems

arf
out

gin
re
lex

ng

ne

rier
-

n

ir-
nit
een
en
l-

nce
I. INTRODUCTION

The purpose of this article is to describe a procedure
starts from quantum chromodynamics~QCD! with only one
flavor of massive quarks and produces the Schro¨dinger equa-
tion for heavy quarkonia in a single formulation of th
theory. Only the first approximation for the final Hamiltonia
is evaluated. In this simplest version, the procedure invol
a guess for the gluon mass term. But the guess appea
have little influence on the result. The procedure itself is
limited to the simplest version and the gluon mass ansatz
be tested in the future in refined calculations and phen
enology. The procedure is relativistic and can be used
quarkonia in arbitrary motion, which is a prerequisite f
application in high-energy processes. Chiral symmetry is
plicitly broken in the case of heavy quarks and the issue
the spontaneous breaking of the symmetry is ignored.

The approach described here stems from the simila
renormalization-group procedure for Hamiltonians@1#,
which has been applied to QCD@2# using the light-front~LF!
form of dynamics@3#. A new ingredient is the boost-invarian
creation and annihilation operator calculus for effect
quarks and gluons~see below!. Otherwise, the LF approac
has been known for a long time, mainly as a candidate
connecting two qualitatively different models of hadrons: t
parton model in the infinite momentum frame~IMF! @4,5#
and the constituent model in the rest frame of a hadron@6#.
Many contributions in that area@7# have followed the semi-
nal work on exclusive processes@8#. Through the boost in-
variance and precisely defined notion of effective const
ents, the approach described here aims at eventu
providing a bridge between the two models of hadrons i
single theoretical framework. Before this can happen, ho
ever, the case of a heavy quarkonium is chosen here a
simplest one to begin with and test the method. This does
mean that the structure of theoretical heavy quarko
0556-2821/2004/69~6!/065002~23!/$22.50 69 0650
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closely resembles the structure of nucleons or that one
study the parton model or the connection between the cur
and constituentu and d quarks in the context of the heav
quarkonium discussed here. But our formulation that in pr
ciple can be attempted in these cases is greatly simplified
the restriction to only one heavy flavor. Even in this simp
fied case the constituent picture faces a number of probl
when one attempts to formulate itab initio in quantum field
theory, where local interactions require cutoffs that dw
any finite mass parameters and one is forced to think ab
infinitely many bare particles in the Fock space to be
with. Thus it is important to explain how the new procedu
works in this case before one tackles the more comp
theory with light fermions.

In the LF dynamics, the evolution of states is traced alo
the direction of a lightlike four-vectornm. With the conven-
tional choice of n5(1,0,0,21), the variablenx5x01x3

[x1 plays the role of time whileP25P02P3 is the Hamil-
tonian. In order to define it for bare particles in QCD, o
has to choose a gauge. No serious alternative exists tonA
5A150. But the equationDmFm15 j 1 implies a constraint
that is analogous to the Gauss law and forces the Fou
components ofA2 to contain inverse powers of the kine
matical momentumk1. Sincek1 ranges from 0 to infinity,
the inverse powers ofk1 produce singularities in the regio
around zero.

One can impose a lower bound onk1, such ask1.d1,
to regulate the theory@2,9–11#. The parameterd1 becomes a
smallest unit of momentum that any particle, physical or v
tual, can carry in such discretized theories. But the fixed u
breaks the boost invariance required for connection betw
the IMF and the rest frame of any hadron. Namely, wh
some physically relevantP1 is made large, the smallest a
lowed x5d1/P1 becomes small. In the IMFP1→` and
the same small-x divergences re-appear despite the prese
of d1. The key singularity is related to thedx/x distribution
©2004 The American Physical Society02-1
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of gluons in the parton model and seems to require a dyna
cal mechanism to remove. One cannot just varyd1 together
with P1 because boosts cannot change the cutoff in a qu
tum theory constructedab initio @12#.

There exists a possibility that the small-k1 singularities
are related to the properties of the vacuum state. The
rules for heavy quarkonia@13# include quark and gluon con
densates@14# that may participate in the dynamics in th
small-k1 region @2,5,15–20#. In the QCD picture with such
nontrivial ground state@21,22#, and relativistic bound-state
excitations of this state in the form ofp mesons, one can
hardly hope to resolve the small-k1 singularity easily. The
situation simplifies a lot in the case of quarks with massm
@LQCD . The small-x singularity and a nonperturbativ
binding mechanism for quarks and gluons can interplay w
each other without interference from the vacuum. It is n
clear yet if similar dynamical effects in the small-x region,
still well separated from the vacuum singularity itself, c
play any significant role in the case of light quarks and g
ons, and whether they can be relevant and contribute to
interactions and saturation mechanisms of partons@23–26#.

The gluon mass ansatz is introduced to represent eff
of the non-Abelian interactions. The ansatz is inserted at
level of solving the eigenvalue equation for the Hamiltoni
Hl , wherel is the renormalization-group~RG! parameter. It
is a tool used to approximate the energy of interacting eff
tive gluons in the presence of quarks and should not be
sociated with a violation of gauge symmetry in the init
Lagrangian. All the Hamiltonians discussed here are defi
only in the gaugeA150, and Hl does not exhibit local
gauge invariance. The entire procedure that starts from
initial Lagrangian and eventually uses the mass ansatz
effective gluons in solving for eigenstates ofHl is similar to
the one proposed in Ref.@2# and later discussed in simplifie
matrix models@27,28#. New elements of the present a
proach are the limitation of power counting to the relativ
motion variables, the exact boost invariance, removal
small-x divergences from the eigenvalue problem forHl

through the mass ansatz as a function of the relative
menta, and no need forad hocpotentials in the first approxi
mation. All these features will be described in detail later

In brief, Hl5Tl1Vl , where Tl is the kinetic energy
operator made of all terms that are bilinear in the creat
and annihilation operators for the effective particles, andVl

represents all other terms. The parameterl defines the width
of momentum-space form factors inVl . For some value of
l5l0;1 GeV, one can freely add toHl0

a term of the

form @12(al0
/as)

n#m2, where n>2. The number 2 en-
sures that corrections to the first approximation occur firs
the fourth-order of expansion ofHl0

in powers ofg05gl0
,

a05g0
2/(4p). This is the lowest order at which a perturb

tive shift in the gluon energy in any state can influence
contribution of that state to the dynamics of any other stat
perturbation theory, keeping intact the QED-like small co
pling expansion scheme with a Coulomb potential.m2 stands
for the mass term that one assigns to the effective gluon
the transverse size 1/l0. The interpretation of 1/l as the
spatial size of the color charge distribution in the correspo
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ing effective particles is based on the feature mention
above thatVl contains vertex form factors of widthl in
momentum space. The mass ansatz contributes to the in
ant masses throughm2/x, wherex is the fraction of the lon-
gitudinal momentum carried by the gluon.as denotes the
large, relativistic value of the coupling constant in QCD
the scalel0 with a trueLQCD in this scheme. The term with
m2 vanishes fora05as . Nevertheless, onlym2 counts when
the ratioa0 /as is small. Thus, in the weak coupling expa
sion,

Hl0
5Tl0

1m21@Vl0
2~a0 /as!

nm2# ~1!

and the term@Vl0
2(a0 /as)

nm2# is treated as a source o

small corrections in comparison tom2.
The requirement of cancellation of the small-x singulari-

ties in the effective dynamics imposes some perturbativ
determined constraints on the otherwise nonperturbative
satz form2. These constraints restrict the behavior ofm2 as a
function of the gluon motion with respect to other constit
ents. In the future, the refined versions of the same proce
may provide constraints that come closer to the actual beh
ior of gluons. This behavior is hoped to be uncovered
computer simulations that one may build around the fi
approximation. Then, the extrapolation toa05as can re-
cover the original theory from a few terms in the wea
coupling expansion ifm2 approximates the behavior of e
fective gluons well. Initially, the gluon mass term is viewe
as a function of the relative momenta andLQCD . The latter
depends ona0 asl0 exp(2c/a0) with a positive constantc.
This means thatLQCD vanishes to all orders in the perturb
tive expansion, andm2 is considered to be on the order of
Before one knows more,m can only be estimated on th
basis of implications for the resulting Schro¨dinger equation.
The size ofm can be compared with four scales:LQCD , l0 ,
m, and the Bohr momentum scale,kB5a0m/2, which is dis-
tinguished nonperturbatively by the Coulomb interactio
But if m2 is right, then@V2(a0 /as)

nm2# must be a source
of only small corrections in the whole range of couplin
between 0 andas . This is taken for granted in the prese
article. Since the first approximation turns out to be not s
sitive to the details ofm, new information can be obtaine
only in the refined calculations.

The value of the weak-coupling expansion scheme
Hamiltonians is that it starts from a local theory and leads
Hl that is capable of describing physically relevant nonp
turbative dynamics even ifHl is calculated only in low or-
ders. This idea is known to work in the case of QED: t
Coulomb potential accounts for highly nonperturbative d
namics of atoms, including the nature of chemical bo
while the Hamiltonian itself is only of the formal order ofa.
Condensed-matter physics illustrates this point in still wid
domain.

But when one applies the weak-coupling expansion id
to QCD @2#, one faces the fact that the strong-coupling co
stant rises to 10, 30, or even 100 times larger value tha
the case of atoms or positronium in QED. This leads to
complex interplay between the perturbative and nonpertu
tive parts of the calculation, enhanced dependence of obs
2-2
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ables on the RG parameterl, problems with obtaining the
Poincare´ symmetry in solutions, and amplification of art
facts due to the small-k1 regularization. Most of the prob
lems seem to come from perturbation theory in the RG p
of the calculation. An exact RG procedure by definition p
videsHl whose structure depends onl but the spectra and
S-matrix elements do not. However, when one uses exp
sion in powers ofa0 and then extrapolates toa05as , a
considerable dependence of the eigensolutions onl can en-
sue because of missing many terms. This is visible in mod
that are asymptotically free and produce bound sta
@28,29#. One has to find the right value foras at givenl0
from fits to bound-state observables, and perform con
tency checks for whole sets of different observables@30#. In
QCD, such checks involve the unknown functions of m
menta in the finite parts of the ultraviolet counterterms, u
known terms depending onLQCD , and artifacts of the regu
larization of small-k1 divergences. So many unknown
suggest the possibility that the approach may never ach
the desired level of predictive power. But the simplicity
the harmonic potential found here in the first approximat
illustrates that there is a high degree of order in the r
structure ofHl . It is a consequence of preserving all sev
kinematical symmetries of the LF scheme in the RG pro
dure. These symmetries limit the large number of terms
are allowed by the LF power counting using absolute m
mentum variables@2#, to a much smaller number of term
that depend only on the relative momenta of the constitue
The LF symmetries must also be respected by the in
regularization prescription for the required counterterms
be simple.

The renormalization-group procedure for effective p
ticles ~RGEP!, which is employed here, begins with regula
ization of the ultraviolet and small-k1 divergences by inser
tion of some regularization factorsr only in the interaction
terms in the initial Hamiltonian. Roughly speaking, the reg
larization factors have the structurer 5r Dr d , for every bare
particle in every vertex. All relevant details of the regula
ization factors are given in Sec. II and Appendix A. T
factorsr D limit the range of relative transverse momenta
the interacting bare particles by the parameterD. These fac-
tors are responsible for the transverse ultraviolet finitenes
the regulated theory. Then, the RGEP procedure produce
effectiveHl by solving operator differential equations. As
result, Hl is written in terms of operators that only crea
and annihilate effective particles, and interactions of th
contain new form factorsf l that differ considerably from the
regularization factorsr D of the initial bare theory. The form
factors contain only a finite width parameterl and are com-
pletely independent of the regularization scheme. Also,f l

limits changes of entire invariant masses of groups of eff
tive particles in interaction. These invariant masses dep
on the transverse and longitudinal momenta simultaneo
in a relativistically invariant way. It turns out that by lowe
ing l through solution of the RGEP differential equatio
with initial conditions that include counterterms, one e
cludes a possibility thatr DÞ1 whenl!D, because the rela
tive transverse momenta are always smaller than the inv
ant masses. Thus, on the way of reducingl from infinity
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~regulated bare theory,f `51) to a finite value~effective
theory with f l), RGEP introduces some correlations of sp
cial relativity between transverse and longitudinal mome
in the effective interaction terms inHl .

In the case of the small-k1 singularities, the regulating
factorsr d limit only the ratios of momentak1. The ratios are
limited from below by the dimensionless parameterd. As
already mentioned, all details of the factorsr d are explained
later. But there exists a qualitative difference between
ultraviolet regularizationr D and the small-x regularizationr d

that should be pointed out in advance for conceptual reas
Let us stress first that every creation or annihilation opera
labeled by momentumk1, that enters the initial interaction
Hamiltonian is supplied with a corresponding factorr d(x),
where x5k1/p1, and p1 is the sum of all momenta tha
label all creation operators, or, equivalently, all annihilati
operators in the same interaction term~see Appendix A!. The
RGEP procedure does not remove dependence onr d from
Hl because the small-x singularities are not purely ultravio
let in nature. However, the effective theory does lead to c
cellation of the small-x singularities in colorless states
which is a correlation that is built in through the gauge sy
metry of the Lagrangian that was used to construct the in
Hamiltonian, and which is preserved in the RGEP procedu
A cross check on the effective theory is provided by the f
that in QCD withr d(x);xd, Hl contains the coupling con
stantgl , which depends on the scalel in the same asymp
totically free way @32# that characterizes the running co
pling constant dependence on the renormalization scal
the Feynman diagrams@33,34#. This shows that there exists
regularization procedure of small-x singularities that togethe
with RGEP renders correlations in the effectiveHl that cor-
respond to the known behavior of the fully relativistic theo
in its perturbative domain.

HamiltoniansHl0
with small l0 are worth studying be-

cause their eigenstates can be expanded in the effective
ticle basis in the Fock space and the wave functions in
expansion are expected to correspond to the constituent
ture of hadrons. This is envisioned in analogy to the mod
based on Yukawa theory@35#. The interactions are sup
pressed by the form factors and cannot copiously create
constituents, even if the coupling constanta0 becomes large.
Exotic hadron states may have their probability distributio
shifted in the number of effective particles above the co
stituent quark model values of 2 or 3@36#. The effective
dynamics can be in agreement with requirements of spe
relativity even if it is limited to a small number of effectiv
constituents, and the RGEP provides rules for construc
the representation of the Poincare´ group @37#. But the key
feature is that the transition between the bare and effec
degrees of freedom is made in one and the same formal
There is no need to match different formulations of t
theory, such as in the case of lattice theory and the c
tinuum perturbation theory in the Minkowski space@38–40#,
with none of the parts meant to cover the whole range
relevant scales on its own.

One more comment is required concerning the smax
divergences in the eigenvalue equation forHl . In the initial
2-3
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studies that usedd1 to limit bare particles’ momenta an
employed coupling coherence to derive certainHl @41–45#,
one could keep only a quark-antiquark sector in the co
sponding eigenvalue problem and the resulting equation
finite in the limit d1→0. Similarly, no small-k1 divergences
were encountered in the case of gluonium approximated
states of only two gluons@46#. In contrast, the present RGE
approach demands inclusion of states that contain an a
tional effective gluon which is needed to cancel small-x di-
vergences. For example, if one keeps only a pair of the
fective quark and antiquark, the leading nonrelativistic~NR!
terms are free from the small-x singularities@31# but relativ-
istic corrections are singular@47,48#. When the additional
gluon is included, the condition of cancellation of the sma
x divergences becomes a guide in understanding the g
dynamics. The rules of including the gluons must be brou
under quantitative control and the well-known case of he
quarkonia provides a laboratory for testing the appro
based on the gluon mass ansatz. The tests require a
approximation to begin with and a candidate is identified
the next sections.

This paper is organized as follows. Section II describ
the initial Hamiltonian of LF QCD with one heavy flavor an
the procedure for deriving an effectiveHl . Section III dis-
cusses the eigenvalue equation for a quarkonium, and in
duces the ansatz for the gluon mass term. Small-x effects in
the dynamics are described in Sec. IV. The resulting poten
in the Schro¨dinger equation for aQQ̄ bound state is de
scribed in Sec. V. Section VI provides a brief summary a
outlook. The Appendixes contain key details required
completeness.

II. HAMILTONIANS

The regularized canonical Hamiltonian of LF QCD wi
one heavy flavor of quarks,H, is given in Appendix A. It
includes ultraviolet counterterms. This section describes
main features ofH and the RGEP derivation of the effectiv
HamiltonianHl with a finite widthl. Hl is independent of
the ultraviolet regularization factorsr D in H when D→`.
The small-x regularization factorsr d , which are also presen
in H, and their role inHl will be discussed later.

The initial Hamiltonian has the structure

H5Hc21HA21HcAc1H (cc)21X, ~2!

where the termHc2 denotes the kinetic energy operator f
quarks,HA2 the kinetic energy operator for gluons,HcAc is
the interaction term that couples gluons to quarks,H (cc)2 is
the instantaneous interaction between quarks, andX denotes
all other terms including the counterterms.

In terms of the creation operators for bare particles,b† for
quarks,d† for antiquarks,a† for gluons, and the correspond
ing annihilation operators, the kinetic energy terms are of
form

Hc25(
sc

E @k#
k'21m2

k1
@bksc

† bksc1dksc
† dksc#, ~3!
06500
-
as

y

di-

f-

-
on
t
y
h
rst

n

s

o-

al

d
r

e

e

and

HA25(
sc

E @k#
k'2

k1
aksc

† aksc , ~4!

where k denotes the three kinematical momentum com
nents,k1 andk'5(k1,k2). The symbol in a bracket, such a
@k#, refers to the integration measure,

@k#5
dk1d2k'

16p3k1 . ~5!

The subscriptc stands for color ands for spin. The massm
is assumed to be very large in comparison toLQCD .

The quark-gluon coupling terms inHcAc that preserve the
number of quarks and antiquarks have the form

Y5g(
123

E @123# r̃ 3,1@ j 23b2
†a1

†b32 j̄ 23d2
†a1

†d31H.c.#.

~6!

The regularization factorr̃ 3,1 is singled out to indicate its
presence. The coefficientsj 23 and j̄ 23, are functions of the
quark and gluon colors, spins, and momenta, with all det
provided in Appendix A. These coefficients contain t
three-momentum conservationd-function factors, denoted
by d̃, color factors t23

1 , and products of spinors,j 23
m

5ū2gmu3 and j̄ 32
m 5 v̄3gmv2. The latter are contracted with

polarization vectors for gluons, so that

j 235 d̃t23
1 gmn j 23

m «1
n* , ~7!

and

j̄ 235 d̃t32
1 gmn j̄ 32

m «1
n* . ~8!

The instantaneous termH (cc)2 contains

Z52g2(
1234

E @1234#d̃t12
a t43

a @ j 12
1 j̄ 34

1 /~k1
12k2

1!2#

3@ r̃ 1,2r̃ 4,31 r̃ 2,1r̃ 3,4#b1
†d3

†d4b2 . ~9!

The current factorsj and the gluon polarization vector
grow with the relative transverse momenta of the interact
particlesk'. These can increase to infinity and the regul
ization factorsr D are introduced to limit the range to a finit
one. In addition, there are small-x divergences due to the
inverse powers ofx, especially in the gluon polarization vec
tors that contain terms proportional tok'/x. The small-x
singularities are regulated by factorsr d .

The RGEP procedure generates ultraviolet counterte
contained in the operatorX in Eq. ~2! and renders the effec
tive particle HamiltonianHl which is independent ofr D .
The procedure is defined order by order in the formal exp
sion in powers of the bare coupling constantg. This expan-
sion is eventually re-written in terms of the effective co
pling constantgl , which replacesg in Hl and depends on
the ratio l/LQCD @32#. The procedure is designed so th
2-4
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energy differences in denominators of the perturbative ev
ation of Hl are limited from below byl. Therefore no in-
frared divergences are encountered in the evaluation ofHl .
Also, no perturbative intrusion into the binding mechanism
generated whenl is kept above the scale of typical relativ
momenta of the bound-state constituents. These feat
qualify the RGEP as a candidate for providing an answe
the well-known question of how it is possible that a simp
two-body Schro¨dinger equation may represent a solution to
theory as complex as QCD@2,49#.

A very brief recapitulation of the RGEP is provided he
for completeness. The derivation ofHl begins with a unitary
change of the degrees of freedom from the bare quarks
gluons in Eq.~2! to the effective ones. Letq commonly
denote the bare operatorsb†, d†, anda†, and their Hermitian
conjugates. The operatorsq are transformed by a unitar
operatorUl into operatorsql that create or annihilate effec
tive particles with identical quantum numbers,

ql5UlqU l
† . ~10!

The bare pointlike particles inH of Eq. ~2! correspond tol
equal infinity. One rewrites the HamiltonianH in terms ofql

and obtains

H5Hl~ql!. ~11!

Using Ul , one has

Hl[Hl~q!5U l
†HUl . ~12!

ThusHl has the same coefficient functions in front of pro
ucts of qs as the effectiveHl has in front of the unitarily
equivalent products ofql’s. DifferentiatingHl with respect
to l, one obtains

Hl852@Tl ,Hl#, ~13!

whereTl5U l
†Ul8 . Tl is constructed using the notion of ve

tex form factors for effective particles. For example, if
operator without a form factor has the structure

Ôl5E @123#Vl~1,2,3!ql1
† ql2

† ql3 , ~14!

then the operator with a form factor is written asf lÔl and
has the structure

f lÔl5E @123# f l~M12,M3!Vl~1,2,3!ql1
† ql2

† ql3 .

~15!

Different choices of the functionf l imply different interac-
tions. The choice adopted in this study is@32#

f l~M12,M3!5exp@2~M 12
2 2M 3

2!2/l4!]. ~16!

For any operatorÔ expressible as a linear combination
products of creation and annihilation operators,f Ô contains
a form factor f l(Mc ,Ma) in front of every product.Mc
06500
u-

s
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o

nd

andMa stand for the total free invariant masses of the p
ticles created~subscriptc) and annihilated~subscripta) by a
given product.

The effective Hamiltonian is defined to have the structu

Hl5 f lGl , ~17!

whereGl has to be calculated for givenf l . One usesGl

5Gl(q), which is introduced in the same way asHl in Eq.
~11!. GI satisfies the differential equation

GI85@ fGI ,$~12 f !GI%G0
8 #, ~18!

whereGI5G2G0 , G0 is the part ofH that does not depend
on the coupling constantg, and the curly bracket with sub
script G0 denotesT that solves@31#

@T,G0#5@~12 f !GI #8. ~19!

The initial condition for Eq.~18! is thatG`5H,

Gl5H1 Èl

ds@ f sGIs ,$~12 f s!GIs%G0
#. ~20!

This equation shows that one can find the countertermsX in
H that remove regularization dependence fromGl . Hl

5 f lGl andHl is obtained by replacingq by ql .
GIl is expanded into a series of termstn;gn,

GI5 (
n51

`

tn . ~21!

t1 is independent ofl. Only the termHcAc needs to be
discussed here. According to Eq.~6!, t15a211a12, where
a21 denotes terms that create a gluon anda12 the terms that
annihilate a gluon~the left subscript denotes the number
creation and the right subscript the number of annihilat
operators!. The corresponding effective Hamiltonian intera
tion term is obtained by multiplying the integrand in Eq.~6!
by f l and transformingq’s into ql’s.

When one neglects the terms that change the numbe
particles by more than 1,t25b111b22. Equation~18! im-
plies

t285@$ f 8t1%, f t1#[ f 2@t1t1#, ~22!

with f 25$ f 8% f 2 f $ f 8%. The first factorf in f 2 refers to in-
variant masses in the firstt in the square bracket, and th
secondf in f 2 is for the secondt. The square bracket denote
all connected terms that result from contractions that repl
productsqiqj

† by commutators or anticommutators approp
ately for bosons and fermions. The solution fort2 is then
given by

t2l5F2l@t1t1#1t2` , ~23!

wheret2` includesH (cc)2 and the second-order mass cou
terterms fromX in Eq. ~2!. F2l depends on incoming an
outgoing momenta in the two vertices generated by thet ’s. If
one labels the three successive configurations of particle
menta bya, b, andc, in the sequenceatabbtbcc, and intro-
2-5
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duces the symboluv5M uv
2 2M vu

2 , whereM uv
2 denotes

the free invariant mass of a set of particles from the confi
ration u that are connected to the particles in the configu
tion v by the interactiontuv in the sequenceutuvv, the
vertex form factor of Eq.~16! in the interactiontuv can be
written as

f l~Mab ,Mba!5exp@2~ab2/l4!#[ f ab . ~24!

If one then denotes the parent momentum for the vertextuv
by Puv , and writespuv in place ofPuv

1 , while all the minus
components of momenta of the virtual quarks and gluons
given by the eigenvalues ofG05Hc21HA2,

F2~a,b,c!5
pbaba1pbcbc

ba21bc2
@ f abf bc21#. ~25!

The second-order perturbation theory renders

Hl5Tql1Tgl1 f l@Yqgl1Vqq̄l1Zqq̄l#. ~26!

The kinetic energy term for effective quarks is

Tql5(
sc

E @k#
k'21ml

2

k1
@blksc

† blksc1dlksc
† dlksc#,

~27!

where

ml
25m0

21~4/3!g2E @xk# r̃ d
2~x!(

12
u j 23

n «n1* u2

3@F2l~m2,M 2,m2!2F2l0
~m2,M 2,m2!#/k3

1 .

~28!

In the order of appearance,m0
2 is the quark mass squared th

should be present inTql0
in order to fit data for quarkonia

m0
25m21o(g2). The factor 4/3 comes from color, (Nc

2

21)/(2Nc). The integration measure is

@xk#5dx d2k'/@16p3x~12x!#, ~29!

wherex5k1
1/k3

1 is the fraction of the quark momentumk3

carried by the virtual gluon, andk'5k1
'2xk3

' is the relative
transverse momentum of the gluon with respect to the qu
2. The effective mass does not depend on the particle mo
This is a unique property of the RGEP in LF dynamics. T
small-x regularization factor is

r̃ d~x!5r d~x!r d~12x!, ~30!

where@32#

r d~x!5xdu~x!. ~31!

The middle argument ofF2l is

M 25~m21k'2!/~12x!1k'2/x, ~32!

and
06500
-
-

re

rk
n.

e

F2l~m2,M 2,m2!/k3
15@ f l

2~M 2,m2!21#/~M 22m2!.

~33!

The gluon kinetic energy term reads

Tgl5(
sc

E @k#
k'21ml

2

k1
alksc

† alksc . ~34!

The explicit form ofml
2 @31,32# is not needed here.

The next term in Eq.~26! is Yl5 f lYqgl ,

Yl5g(
123

E @123#r d~x1/3!r d~x2/3! f l~M 12
2 ,m2!

3@ j 23bl2
† al1

† bl31 j̄ 23dl2
† al1

† dl31H.c.#. ~35!

The effective potential term,Vl5 f lVqq̄l , originates
from the exchange of bare gluons with jumps in the invari
mass of intermediate states abovel; see Fig. 1:

Vl52g2(
1234

E @1234#d̃t12
a t43

a Vl~13,24!b1
†d3

†d4b2 ,

~36!

where

Vl~13,24!5
dmn~k5!

k5
1

j 12
m j̄ 43

n f l~M 13
2 ,M 24

2 !

3@u~z! r̃ d~x5/1! r̃ d~x5/4!F2l~1,253,4!

1u~2z! r̃ d~x5/3! r̃ d~x5/2!F2l~3,154,2!#.

~37!

The sum over polarizations of the intermediate glu
reads

dmn~k5!52gmn1
nmk5

n1k5
mnn

k5
1 , ~38!

where the gluon momentum is

k5
1,'5«~z!~k1

1,'2k2
1,'!, ~39!

and«(z)5u(z)2u(2z),

z5~k1
12k2

1!/~k1
11k3

1!, ~40!

while x55uzu5k5
1/(k1

11k3
1), and

FIG. 1. Momentum labels in the interaction term mediated
the exchange of one high-energy gluon. The same labeling is u
in the exchange of effective low-energy gluon in the next sect
and the appendixes.
2-6
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k5
25k5

'2/k5
1 . ~41!

The last term in Eq.~26! is the instantaneous interactio
between effective quarks,Zl5 f lZqq̄l ,

Zl52g2(
1234

E @1234#d̃t12
a t43

a Zl~13,24!bl1
† dl3

† dl4bl2 ,

~42!

where~see Fig. 2!

Zl~13,24!5
1

k5
12

j 12
1 j̄ 34

1 f l~M 13
2 ,M 24

2 !@u~z! r̃ d~x5/1! r̃ d~x5/4!

1u~2z! r̃ d~x5/3! r̃ d~x5/2!#. ~43!

III. EIGENVALUE EQUATION

Oncel is lowered in perturbation theory to some val
l0 just above the scale of binding mechanism, the resul
Hl0

can produce the mass and wave function of a bo
state of interest in a numerical diagonalization. The ba
states can be limited to only those that have free invar
masses within a range of size aboutl around the eigenvalue
This has been verified numerically in a matrix model w
asymptotic freedom and bound states@28–30#. In that calcu-
lation, Hl was derived using perturbation theory up to six
order. A quite small set of effective basis states with energ
between 4 MeV and 4 GeV was sufficient to reach accur
close to 1% in the computation of the bound-state energy
the order of 1 GeV. In great contrast, the initial Hamiltoni
of the model coupled all states in the entire range betw
0.5 keV and 65 TeV. Preliminary estimates performed
Yukawa-like theories also indicate that the form factorsf l

suppress large momentum changes so strongly that the e
tive dynamics derived in low-order perturbation theory
ceives only small corrections from higher-order terms, ev
when the coupling constant is made comparable with 1@35#.
In the case of heavy quarkonia the same strategy sh
work even more accurately than in the Yukawa theory
causeas may be very small in comparison to 1. But th
weak-coupling expansion forHl0

produces new interaction

terms already in ordera0. These are derived here. An ansa
for the gluon mass allows us then to finesse the structur
the first approximation for the resultingQQ̄ potential.

The eigenvalue problem forHl reads

HluP&5EuP&, ~44!

whereuP& denotes an eigenstate of the operatorsPl
1 andPl

'

with their eigenvalues denoted byP1 andP' ~an example of

FIG. 2. Momentum labels in the instantaneous gluon interac
term.
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the RGEP construction of the Poincare´ algebra at scalel in
quantum field theory is given in Ref.@37#!. The eigenvalueE
has the form

E5~M21P'2!/P1. ~45!

The center-of-mass motion is separated from the bind
mechanism, which is a unique LF-dynamics feature p
served by the RGEP, andP1 andP' drop out of the eigen-
value equation. The stateuP& is written in the effective par-
ticle basis as

uP&5uQlQ̄l&1uQlQ̄lgl&1•••. ~46!

The dots denote components with more than three effec
particles. Such expansion does not apply in the case of
bare particles because those interact locally and the inte
tions disperse probability density to high momentum regio
and multiparticle sectors @35#. The wave function
c13(k13

' ,x1) of the effective valence componentuQlQ̄l&, is
introduced by the formula

uQlQ̄l&5E @13#P1d̃c13~k13
' ,x1!bl1

† dl3
† u0&, ~47!

where the quark and antiquark quantum numbers are lab
with 1 and 3, respectively.c13(k13

' ,x1) must have dimension
of 1/k13

' for the canonical normalization condition to giv

^P8uP&5P1d̃(P2P8) ~quantum numbers of the statesuP&
anduP8& must be the same!. The relative transverse momen
tum of two particles, 1 and 3, is always defined as

k13
' 5~k3

1k1
'2k1

1k3
'!/~k1

11k3
1!, ~48!

and x15k1
1/P1512x3. The wave function depends onl

and quickly vanishes foruk13
' u.l. The normalization condi-

tion gives

^QlQ̄luQlQ̄l&5NQQ̄~l!P1d̃~P2P8!uP85P , ~49!

where

NQQ̄~l!5(
13

E @x1k13#uc13~k13
' ,x1!u2. ~50!

The probability of finding other components than t
uQlQ̄l& is given by 12NQQ̄(l). The value ofNQQ̄(`) is
not known but it may be close to 0. On the other hand, o
expectsNQQ̄(l) to be close to 1 whenm@LQCD and

m@l@LQCD . ~51!

When the wave function is negligible for relative momen
much larger than suchl, the NR approximation must be
accurate in description of the relative motion of quarks.
addition, whenal!1, the Coulomb binding mechanism
expected to work and the dominant region of mome
should lie around the Bohr momentum scalekB5alm, pro-
vided thatl@kB . At the same time, all the fermion spin an
relativistic correction factors cannot become large~or diverg-

n

2-7
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ing @51#! in the NR expansion because of the presence of l

@35#. But the dynamics of the dominantuQlQ̄l& component
receives some significant contributions from theuQlQ̄lgl&
component in the small-x5 region, since the coupling to th
gluon sector grows likek5

'/x5 whenx5→0. The gluon com-
ponent may have a negligible contribution to the norm
has to be accounted for whenx5 is small.

If one neglected sectors with gluons entirely, the eig
value Eq.~44! would read

@Tql1 f l~Vqq̄l1Zqq̄l!#uQlQ̄l&5EuQlQ̄l&. ~52!

This equation is mentioned here because an analogous
was considered before@43–45# in a scheme using couplin
coherence and the absolute lower bound on gluon mome
k5

1.d1. The equation found in Ref.@43# had a finite limit
when d1→0. The resulting dynamics contained a logarit
mically rising potential and reproduced some of the char
teristic features of the charmonium and bottomonium sp
tra. This was a considerable success in view of how crude
approximations were and the fact that the potential derive
Ref. @43# and employed in Refs.@44,45# behaved differently
in the transverse and longitudinal directions. But that st
egy could not work in the RGEP approach.

Three reasons can be given now for why the pureuQlQ̄l&
approximation is not allowed in solving the eigenvalue pro
lem for Hl . Two of them are related to the fact that th
coupling between the sectorsuQlQ̄l& and uQlQ̄lgl& is pro-
portional to the first power of the coupling constantg, being
mediated by the termYl of Eq. ~35!. The first argument is
nonperturbative. It is based on the result that the matrix m
els with asymptotic freedom and bound states lead to a
cessful approximation to the eigenvalue equation withHl of
second order ingl if and only if all important matrix ele-
ments in the properly chosen energy window are accoun
for. These certainly include matrix elements on the order og
@28,29#. The second argument is perturbative, and conce
the evaluation of the effective Hamiltonian that acts in t
sectoruQlQ̄l& alone. When the statesuQlQ̄lgl& are lifted in
energy by an amount of order 1, quantum transitions in
quark-antiquark sector that proceed through the st
uQlQ̄lgl& are formally of orderg2 and must be included
when one computes the quark-antiquark dynamics in a se
of powers ofg up to terms of the explicit order ofal . The
third argument is based on the fact that Eq.~52! has a finite
limit when d→0 only in the leading NR approximation@31#.
Relativistic corrections contain singularities@47,48# and the
additional gluon sector has to be taken into account to
move them.

The eigenvalue Eq.~44! implies that theuQlQ̄lgl& com-
ponent satisfies the equation

@Tql1Tgl1Vqq̄gl2E#uQlQ̄lgl&52YluQlQ̄l&.
~53!

Vqq̄gl denotes interactions with sectors with more than o
gluon and/or additional quark-antiquark pairs, and the n
Abelian gluon-quark and quark-antiquark potentials of or
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al . The interactions cause a shift in the gluon energy a
make the eigenvalue equation differ from a similar one
positronium. The idea of seeking an ansatz for the shift a
building a corresponding first approximation in the qua
antiquark sector may seem completely new, but it patte
QED with the exception that there one knows from the out
that the leading approximation to a hydrogen atom or po
tronium is given by a two-body Schro¨dinger equation with a
Coulomb potential@50–52#. The NR lattice approach to
heavy quarkonia@53,54# also starts from a two-body picture
The key argument is not theoretical but comes from the p
nomenology of hadrons. Theoretically, an ansatz for the
ergy shift in the sectoruQlQ̄lgl& is an attempt to harness th
giant eigenvalue problem forH by turning it into the eigen-
value problem forHl and identifying the corrected Coulom
picture that may apply as a first approximation in QCD.

A practical way to increase the invariant mass of t
three-body sector and preserve the kinematical symme
of LF dynamics is to add a massm2 to Tgl , using the rules
outlined in Sec. I; see Eq.~1!. Since the divergence in th
small-x region disappears in the case of positronium wh
one adds a sector with a massless photon, a gluon mass
approaches zero whenx5→0 can remove the small-x5 diver-
gence in the quarkonium case. The rotational symmetry c
dition onm2 can be imposed by demanding that the result
potential in the quark-antiquark sector is a rotationally sy
metric function in the center-of-mass variables~see below!.

Given a gluon mass ansatz, the whole eigenvalue prob
for Hl is limited to only two coupled equations,

~Tq1T̃g!uQQ̄&g1YuQQ̄&5EuQQ̄g&,

YuQQ̄g&1@Tq1 f ~Vqq̄1Zqq̄!#uQQ̄&5EuQQ̄& ~54!

~the subscriptl is omitted!. T̃gl differs fromTgl of Eq. ~34!
by replacement of the perturbativeml

2 by the ansatzm2. It is
understood thatm2 may depend onl. All terms of orderg2

in the three-body sector are ignored because they do
contribute to the dynamics of theuQQ̄& component in
second-order perturbation theory~see below!. This dynamics
is described by the HamiltonianHQQ̄ that acts only in the
quark-antiquark sector. One should keep inHQQ̄ terms of
formal orders 1,g, andg2, when the effective Hamiltonian
Hl is calculated up to the terms of orderg2, while m2;1.
The bareg is understood to go over in higher-order calcu
tions to a suitably definedgl @30,32#. The perturbative ex-
pansion is applied only in the evaluation ofHQQ̄ . Solution
for the bound-state spectrum ofHQQ̄ is not perturbative.

To evaluateHQQ̄ as a power series ing, one can introduce
an operatorR that expresses the three-body compon
through the two-body one,

uQQ̄g&5RuQQ̄&. ~55!

SinceY is of orderg, R is expected to be at least of orderg.
If P̂ denotes the projector on theuQQ̄& sector, one hasR
5(12P̂)R5RP̂ and P̂R5R(12P̂)50. The effective
2-8
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Hamiltonian in theuQQ̄& sector is then given by the formul
@55,56# ~see also Ref.@35# concerning the context of RGEP!

HQQ̄5
1

AP̂1R†R
~P̂1R†!Hl~P̂1R!

1

AP̂1R†R
. ~56!

In the first order ing,

RTq2~Tq1T̃g!R5Y. ~57!

Consequently, the second-order expression for the matrix
ements ofHQQ̄ between different statesi and j in the uQQ̄&
sector is

^ i uHQQ̄u j &5^ i u@Tq1 f ~Vqq̄1Zqq̄!#u j &

1
1

2
^ i uYS 1

Ej2Tq2T̃g

1
1

Ei2Tq2T̃g
DYu j &.

~58!
y
m
rk
a
n
t

m

06500
l-

The effective eigenvalue equation for heavy quarkon
HQQ̄uQQ̄&5EuQQ̄&, takes the form

Fk13
'21ml

2

x1x3
1

mY
2~1!

x1
1

mY
2~3!

x3
2M2Gc~k13

' ,x1!

2
4

3

g2

16p3E dx2 d2k24
'

x2x4
vl~13,24!c~k24

' ,x2!50,

~59!

where

vl~13,24!5Vl~13,24!1Zl~13,24!

1
1

2x5
dmn~k5! j 12

m j̄ 43
n wl~13,24!, ~60!

and
wl~13,24!5H F u~z! r̃ d~x5/1! r̃ d~x5/4! f l~m2,M 52
2 ! f l~M 53

2 ,m2!

~k13
'21m2!/x12@~k13

' 2k24
' !21m2~2,5,3!#/x52~k24

'21m2!/x2

1
u~2z! r̃ d~x5/3! r̃ d~x5/2! f l~m2,M 54

2 ! f l~M 51
2 ,m2!

~k13
'21m2!/x32@~k24

' 2k13
' !21m2~1,5,4!#/x52~k24

'21m2!/x4
G

1F u~z! r̃ d~x5/1! r̃ d~x5/4! f l~m2,M 52
2 ! f l~M 53

2 ,m2!

~k24
'21m2!/x42@~k13

' 2k24
' !21m2~2,5,3!#/x52~k13

'21m2!/x3

1
u~2z! r̃ d~x5/3! r̃ d~x5/2! f l~m2,M 54

2 ! f l~M 51
2 ,m2!

~k24
'21m2!/x22@~k24

' 2k13
' !21m2~1,5,4!#/x52~k13

'21m2!/x1
G J . ~61!
e

The terms withu(z) describe the emission of the gluon b
the quark and absorption by the antiquark, while the ter
with u(2z) describe the gluon emission by the antiqua
and absorption by the quark; see Fig. 1. The first squ
bracket corresponds to the first term in the large rou
bracket in Eq.~58!, and the second bracket corresponds
the second term. The mass termsmY

2 originate from the emis-
sion and re-absorption of the effective gluon by the sa
quark, in which case both terms in the bracket of Eq.~58! are
equal. The mass terms read

mY
2~1!5~4/3!g2E @xk# r̃ d

2~x! f l
2~m2,M 2!

3
j n j m* dmn~k!/x1

~k13
'21m2!/x12~k13

'21M 1
2!/x1

, ~62!

where
s

re
d
o

e

M 1
25@k'21m2~18,58,3!#/x1~k'21m2!/~12x!,

~63!

and

mY
2~3!5~4/3!g2E @xk# r̃ d

2~x! f l
2~m2,M 2!

3
j̄ n j̄ m* dmn~k!/x3

~k13
'21m2!/x32~k13

'21M 3
2!/x3

, ~64!

where

M 3
25@k'21m2~1,58,38!#/x1~k'21m2!/~12x!.

~65!

M is given by Eq.~32!. The subscript 18 denotes the inter-
mediate quark and 58 denotes the intermediate gluon in th
self-interaction of the effective quark 1, and, similarly, 38
2-9
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and 58 denote the intermediate antiquark and gluon in
self-interaction of the effective antiquark 3.

The gluon four-momentumk5 in the sum over polariza
tions, i.e., indmn(k5) in Eq. ~38!, can be written as

k5
a5«~z!qi j

a 1na@k5
22«~z!qi j

2#/2, ~66!

whereij refers to quarks 1 and 2, or antiquarks 3 and 4,

qi j 5ki2kj . ~67!

The quark momentum four-vectors are on the mass sh
Since the gluon connects two vertices, one momentumk5 in
dmn(k5) is contracted with the current carried by the qua
and the other with the current of the antiquark. In the se
interactions, both momenta are contracted with the same
rent. The momentumk5 contracted with currentj i j

a can be
expressed throughqi j

a . But the current conservation implie
that the terms proportional toqi j give zero. Therefore one
can replace Eq.~38! in the gluon exchange terms by

dmn~k5!52gmn1nmnn@k5
21«~z!

3~k2
22k1

21k3
22k4

2!/2#/k5
1 . ~68!

In the quark self-interaction one has

dmn~k58!52gmn1nmnn

k58
2

1k18
2

2k1
2

k58
1 , ~69!

with an analogous result for the antiquark.
The terms with the metricgmn are regular in the small-x5

region, while the terms withnmnn are singular. The metric
terms lead in the well-known way to the Breit-Fermi spi
dependent terms with a Coulomb potential. A discussion
the Breit-Fermi terms and gluons in the context of QCD c
be found in Ref.@13# and references therein. The singul
terms with nmnn are independent of the quark spin. It
shown below that the latter generate the harmonic force
tween quarks when combined with the fermions’ se
interactions, which are also independent of the spin. Thus
harmonic force appears without Breit-Fermi terms. This
sult sets the RGEP approach apart from the models emplo
in Refs.@13,57–63#, where one had to guess whether a co
fining potential appeared with or without Breit-Fermi term
The spin-independent harmonic force is akin in this resp
to the lattice picture and the original charmonium mod
based on the Coulomb force@64–67#.

In the explicit discussion of singular small-x features of
Eq. ~59! in the next section, all thegmn terms are omitted.
The reader should keep their presence in mind until they
re-inserted in Sec. V. The symbols of mass, wave funct
and potential are provided with a tilde as a reminder ab
the need to include thegmn terms. Also, expressions for th
quark masses are simplified by considering from now
only l5l0. The subscript 0 indicates thatl5l0. The an-
satz form2 is understood to correspond tol0.

With the gmn terms hidden andl5l0, the eigenvalue
equation reads
06500
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S k13
'21m0

2

x1x3
1

m̃1
2

x1
1

m̃3
2

x3
2M2D c̃~k13

' ,x1!2
4

3

g2

16p3

3E dx2 d2k24
'

x2x4

j 12
1 j 43

1

P12

1

x5
2 ṽ0~13,24!c̃~k24

' ,x2!50,

~70!

where

ṽ0~13,24!5 f 13,24@k5
21«~z!~k2

22k1
21k3

22k4
2!/2#

3@u~z! r̃ 5/1r̃ 5/4F1,253,41u~2z! r̃ 5/3r̃ 5/2F3,154,2#

1 f 13,24@u~z! r̃ 5/1r̃ 5/41u~2z! r̃ 5/3r̃ 5,2#

1
1

2
@k5

21«~z!~k2
22k1

21k3
22k4

2!/2#w0 ,

~71!

and the last factor ofw0[P1wl0
(13,24) is abbreviated to

w05
u~z! r̃ 5/1r̃ 5/4 f 1,52f 53,4

k1
22 k̃5

2~2,5,3!2k2
2

1
u~2z! r̃ 5/3r̃ 5/2 f 3,54f 51,2

k3
22 k̃5

2~1,5,4!2k4
2

1
u~z! r̃ 5/1r̃ 5/4 f 1,52f 53,4

k4
22 k̃5

2~2,5,3!2k3
2

1
u~2z! r̃ 5/3r̃ 5/2 f 3,54f 51,2

k2
22 k̃5

2~1,5,4!2k1
2

.

~72!

The compact notation includes

f i , j[ f l0
~M i

2 ,M j
2!, ~73!

r̃ 5/i[ r̃ d~x5/i !, ~74!

Fi ,k, j[F2l0
~ i ,k, j !, ~75!

k̃5
2~ i , j ,k!5@k5

'21m2~ i , j ,k!#/k5
1 , ~76!

k5
'5«~z!~k13

' 2k24
' !. ~77!

The mass terms with thegmn terms suppressed are

m̃i
25

4

3
g2E @xk# r̃ d

2~x! f i ,i 858
2 u j 1u2

ki
12

1

x2

x~M 22m2!

m22M i
2 ,

~78!

for i 51,3. M1 is given by Eq.~63! andM3 by Eq. ~65!. In
both cases,M 2 is given by Eq. ~32!, and the factor
( j 1/ki

1)254(12x).

IV. SMALL- x BEHAVIOR

All small-x singularities of the eigenvalue Eq.~59! are
contained in Eqs.~70!, ~71!, and ~78!. We first discuss the
exchange terms, then the mass terms, and finally the ne
fect of the interplay between these terms.

The analysis hinges on the properties of the energy
2-10
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motion of a gluon with respect to the parent quark,pi
1k5

2

5xik5
'2/x5 . pi is the momentum of the parent quarki. The

momentumk5
' ranges under the integrals from 0 tò, while

x5 can reach 0~in the mass terms, the integrals are overk'

andx). Appendixes B and C provide definitions of all var
ables used in the description of the integrands. The key
ficulty is that the ratio of two variables of different kinds,k'

andx, varies quickly with a change of any one of them. Th
complexity is related to the power counting rules for t
Hamiltonian densities on the LF@2#. But the analysis de-
scribed here concerns only the relative motion of the eff
tive particles and it is simplified by taking advantage of t
NR limit after the finiteness of the small-x dynamics with the
gluon mass ansatz is established.

The singularity in the effective gluon exchange term
tempered by the product of two vertex form factorsff. The
form factors vanish exponentially fast whenk5

'2/x5→`.
This preventsx5 from becoming small unlessk5

' vanishes at
least as fast asAx5. Therefore the measure of integratio
over transverse momenta is on the order ofx5 whenx5→0
and it reduces the divergence to a logarithmic one. The lo
rithmic divergence is taken care of using the gluon m
ansatz. The mechanism of reducing singularities to o
logarithmic ones does not work in the instantaneous inte
tion termZl(13,24) and in the terms inVl(13,24) that come
without ff in F2l . But all the terms withoutff are indepen-
dent of m2 and thedx5 /x5

2 and dx5 /x5 singularities cance
out in them perturbatively@16#.

In the fermion self-interactions an analogous pattern
the singularities occurs. But one has to also consider the
of m0

2. The latter is determined by the size of the fr
ultraviolet-finite part of the quark mass counterterm in t
initial Hamiltonian of Eq.~2!. That size is related to an an
satz for a gluon mass term in the sectorsuQg& and uQ̄g& in
the eigenvalue equations for states with quantum numbe
a single fermion; see Appendix C. Eventually, the glu
mass ansatz leads to the result that the single-quark ei
value diverges logarithmically in the limitd→0, while the
quark self-interaction in the quarkonium dynamics becom
finite. The self-interaction and effective gluon exchan
both finite due to the chosen behavior of the gluon m
ansatz, lead together to the harmonic potential which is
scribed in the next section.

According to Appendix B, the dominant exchange ter
in Eq. ~70! read

ṽ0~13,24!5u~z!ṽ1 low1u~2z!ṽ2 low , ~79!

whereṽ1 low is given in Eq.~B19!, andṽ2 low in Eq. ~B20!.
In the limit x5→0,

ṽ1 low5 f 1,52f 53,4

m2~2,5,3!

q'21m2~2,5,3!
, ~80!

and
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ṽ2 low5 f 3,54f 51,2

m2~1,5,4!

q'21m2~1,5,4!
. ~81!

Sinceq'2 is on the order ofuzu, one obtains the result that i
m2 vanishes faster thanq'2, i.e., faster thanx5, the potential
produces a finite effect in the limit ofd→0. In the denomi-
nators of Eqs. ~80! and ~81! there also appearsqz

2

5(2mz)2, which is negligible in comparison to the leadin
terms on the order ofz but can be included here on the bas
of hindsight to take advantage of the NR nature of t
quarks’ motion with respect to each other. The larger is
quark massm for fixed l0 and the smaller isLQCD , the
more accurate the NR picture actually becomes after
small-x divergences are removed. Writingqz5qt, with q

5uqW u, t5cosu, the singular factor 1/x5
2 equals 4m2/qz

2

5(4m2/q2)t22. The integration measured3q is proportional
to q2 and the small-x singularity is actually produced by th
angle integrationdt/t2. m2 should vanish fort→0 in order
to remove the singularity. An example of such behavior
used below to provide a constructive context for the st
that follow. The final result is not sensitive to the details
the example. Given thatm2 vanishes faster thanq2, one can
write

m2~ i ,5,j !5c2~ i ,5,j !q2, ~82!

and determine behavior ofc( i ,5,j ) from the condition that

c̃~ i ,5,j !5
c2~ i ,5,j !

11c2~ i ,5,j !
~83!

should vanish forx5→0.
The only information about the three-particle sector tha

available in the relativistic construction ofqW andc( i ,5,j ) are
the' and 1 components of the momentaki , k5, and kj .
Two physical constraints are used in defining a helpful vec
qW : the definition must respect all kinematical LF symmetr
~to render a boost-invariant description of quarkonia!, and it
must reduce toqz52mz for z→0 whenukW13u/m andukW24u/m
approach 0 in the NR limit. A geometrically motivated ca
didate forqW is provided by the difference between the squa
of the free invariant mass of three effective particles in
stateuQQ̄g& and the square of the invariant mass of theQQ̄
pair in this state. The difference reads

M i5 j
2 2M i j

2 5
k5

'21x5
2M i j

2

x5~12x5!
. ~84!

Multiplication by x5(12x5) produces an expression th
tends in the limit ofx5→0 to the three-momentum transfe
squared that appears in the energy denominators in the sm
x dynamics. The components ofqW are therefore defined a
q'5k5

' and

qz5zMi j . ~85!

Further analysis of all exchange terms shows that if the
satz massm2 behaves like
2-11
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m2;x5
11dm ~86!

~or like q2x5
dm) with 0,dm,1/2, the factorsṽ6 low of Eqs.

~B19! and ~B20! vanish in the limitx5→0 asx5
dm indepen-

dently of the terms in the energy denominators on the or
of x5

3/2 or smaller. Thus the gluon exchange term becom
finite when

c~ i ,5,j !5c~ t ! ~87!

andc(t) is a function that behaves as

c~ t !5cutudm/2, ~88!

for t→0, with c a constant.
With this ansatz, the quark mass terms also become fi

in the limit d→0. Appendix C shows details of howm0
2 is

chosen in agreement with the physical picture explained
the Introduction and at the beginning of this section. Eq
tion ~78! givesm0

21m̃i
25m21dmi

2 with i 51,3 and

dmi
25

4a0

3p2E dx d2k' r̃ d
2~x! f l0

2 ~m2,M 2!

3
M 22m2

x2 S 1

M 0
22m2

2
1

M i
22m2D . ~89!

The functionM 0
2 is given by Eq.~C9! in terms of the gluon

mass functionm0
2 that must satisfy the condition~C10!. The

quark self-energies are positive if

m2~ i ,5,j !.m0
2 . ~90!

A simple way to satisfy this condition is to setm0
250. Then,

dmi
25

4a

3p2E dx d2k' f l0

2 ~m2,M 2!
1

x2

3
m2~ i 8,58, j !

m2~ i 8,58, j !1~k'21x2m2!/~12x!
, ~91!

where i 51 and j 53 or vice versa. The factorsr d are no
longer needed.

The small-x regularization disappears from the quark
nium dynamics entirely. Finite phenomenological parame
that describe the small-x behavior of the gluon mass ansat
such asdm in Eq. ~86!, become responsible for the regula
ization of the exchange and self-interaction terms, preserv
their distinct properties. The mass terms grow whendm de-
creases, while the effective gluon exchange potential p
vides a negative contribution that increases in magnitud
similar rate and compensates the size of the masses at
momentum transfers. The net result is described in the n
section.
06500
er
s

ite

in
-

rs

g

o-
at
all
xt

V. QQ̄ SCHRÖDINGER EQUATION

The condition~51! validates the NR and weak-couplin
limits after the small-x divergences are removed by the gluo
mass ansatz. This section then identifies the leading struc
in HQQ̄ in formal order ofa0. The additional simplification
in the case of smalla0 is that the dominant interaction in Eq
~59! becomes equal to the well-known Coulomb term a
one can find the leading correction analytically.

Equation~59! can be re-written using the relative thre
momentum variables described in Appendix B; see Eq.~B2!.
The integration measure is

dx24d2k24
'

x2x4
5

4d3kW24

M24
, ~92!

and Eq.~59! takes the form

F4~m21kW13
2 !1

dm1
2

x1
1

dm3
2

x3
2~2m1B!2Gc~kW13!

1E d3k24

~2p!3Am21k24
2

U~kW13,kW24!c~kW24!50. ~93!

The mass corrections include now thegmn terms that were
suppressed in the previous section,dmi

25dm̃i
21dmg

2 , and
the potential is

U~kW13,kW24!52
4

3
f 13,244paH 4Ax1x2x3x4

x5
2

3@u~z!ṽ1 low1u~2z!ṽ2 low#1vgJ ,

~94!

wherevg denotes thegmn contribution in the exchange term
Since the form factorf 13,24cuts off changes of the relativ

momenta abovel0 exponentially fast, one can focus on th
eigenstates with lowestM2 and take advantage of the cond
tions ukW13u!m and ukW24u!m that are satisfied in the entir
domain of physically relevant probability distribution. Fo
such states, one can expand Eq.~93! in powers ofkW /m, with
the exception of the form factors that are needed for conv
gence. The Coulomb force defines the momentum scal
the inverse of the quarkonium Bohr radius,kB5r B

21

5a0m/2. Whenl0@kB , the form factorf 13,24 does not dif-
fer from 1 in the dynamically dominant region;f 13,24matters
only when one extends the expansion to high powers ofkW /m.
These would lead to divergent integrals with Coulomb wa
functions and require counterterms@50,51#. The latter are not
needed here and the lowest terms dominate@35#. The binding
energyB is small in comparison tom. Writing the quarko-
nium mass asM52m1B and neglecting;B2/m, one
obtains
2-12
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FkW13
2

m
2B1

dm1
2

2m
1

dm3
2

2m
Gc~kW13!

1E d3k24

~2p!3
VQQ̄~kW132kW24!c~kW24!50. ~95!

The structure ofVQQ̄ and the size of the mass correctio
dm1

2 anddm3
2 need explanation.

The two vertex form factors that appear inside the
change and mass terms in Eq.~59!, have arguments given in
Appendix B in Eqs.~B8!–~B13!. When one writes the prod
uct of the two vertex form factors in the NR limit a
exp(2u2), u reads

u5A2
m

l0

1

t

q

l0
. ~96!

The limit m/l0@1 enforcesq!l0, the more so the smalle
is t. The Coulomb binding mechanism is intact forl0 as
small as several timeskB @35#, which is much smaller thanm
in the weak-coupling limit. Thus the momentum transferq is
much smaller thankB in all terms that containff. These terms
become then negligible in comparison to the Coulomb te
unless they have singularly small denominator factors
small t. That is the case for the mass and exchange te
whendm becomes small. In the presence of thegmn contri-
butions that were omitted in Sec. IV, these terms are foun
follows.

The HamiltonianHQQ̄ has the structure

HQQ̄5m21dm2~ f f ,g1n,0!2dm2~ f f ,g1n,m!

1 f ~12 f f !@~g1n,0!1z#1 f ~ f f !@~g1n,m!1z#,

~97!

whereg denotes thegmn terms,n denotes the singularnmnn

terms, andz denotes the instantaneous terms. The gluon m
ansatz in energy denominators is indicated by an extra v
able in the brackets, and 0 says that the gluon mass is 0.
the difference between the last two terms in Eq.~97!. The
line with f (12 f f ) comes from the perturbative RGEP an
has no gluon mass in it, while the line withf ( f f ) comes
from the exchange of effective gluons, its part (12 f )( f f )
being negligible, and it does involve the gluon mass ansat
denominators. This difference is important because the n
steps will show that the exchange terms with the gluon m
ansatz are relevant only to the spin-independent harm
oscillator force that comes from the small-x region, while the
Coulomb interaction will remain unchanged, i.e., not mo
fied to a Yukawa interaction that one normally associa
with a regular exchange of massive bosons. This happ
because the mass ansatz enters only in the terms with fa
ff, and these are able to produce a significant contribu
only if they contain also factors that are singular in the sm
x region, while the Coulomb term is regular there and com
mainly from 1 in the perturbative term 12 f f , remaining
unmodified. The last two terms can be re-arranged as
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f ~12 f f !@~g,0!1~n,0!1z#

1 f ~ f f !@~g,0!1~g,m!2~g,0!1~n,m!1z#. ~98!

The contribution of (n,0)1z in the first term vanishes in the
leading NR limit; see Appendix B. Two of the terms wit
(g,0) combine tof (g,0), and reduce to the Coulomb ter
with the Breit-Fermi spin corrections. The remaining term
with f in front also being equivalent to 1,

f ~ f f !@~g,m!2~g,0!1~n,m!1z#, ~99!

add to the Coulomb term and produce togetherVQQ̄ in Eq.
~101!. The mass terms can be re-written, in the same fash
as

~ f f !dm2@~g,0!2~g,m!1~n,0!2~n,m!#. ~100!

Expressions~99! and~100! show that the exchange potenti
and the mass terms have similar structures with oppo
signs. A change of variables fromx and k' to qz5xm and
q'5k' in the mass terms produces integrals in which
factor ff ensures thatq5uqW u!m and one can again use th
expansion in powers of the ratio ofq/m. Since the inte-
grands are symmetric functions ofqz , one can extend the
integration to negativeqz and divide the result by 2, which
produces the same integrands as in the exchange te
Hence

VQQ̄~qW !5~11BF!VC~qW !1W~qW !, ~101!

whereBF denotes the Breit-Fermi spin-dependent factors

VC~qW !52
4

3

4pa

q2 ,

~102!

W~qW !5
4

3
4paF 1

qW 2
2

1

qz
2G m2

m21qW 2
expF22S mq2

qzl0
2D 2G ,

~103!

with m25u(z)m2(2,5,3)1u(2z)m2(1,5,4), and

dmi
2

m
52E d3q

~2p!3 W~qW !, ~104!

with m2 equal m2(18,58,3) for i 51 and m2(1,58,38) for i
53.

If the gluon mass ansatz is 0,W50 and the quarkonium
dynamics reduces to the same as in QED with additio
color charge factor 4/3. A finite gluon mass ansatz introdu
new dynamics which is discussed in the remaining part
this section.

W is large and negative whendm is small. The exchange
term tends to compensate the positive contribution of
mass terms. This can be made transparent by re-writing
~95! as
2-13
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FkW2

m
2BGc~kW !1E d3q

~2p!3~11BF!VC~qW !c~kW2qW !

1E d3q

~2p!3 W~qW !@c~kW2qW !2c~kW !#50. ~105!

There is no need to trace the small relativistic correctio
before the main NR picture is identified. Only this picture
discussed below.

SinceuqW u in W is constrained to values much smaller th
kB , one can expand the wave function in the Coulomb
gion under the integral in the Taylor series and consider
lowest terms as candidates for the first approximation,

c~kW2qW !5c~kW !2qi

]

]ki
c~kW !1

1

2
qiqj

]2

]ki ]kj
c~kW !1•••.

~106!

The terms with odd powers ofqW average to 0. The bilinea
terms containq2 times (12t2) times cos2 f, or sin2 f, for
i 5 j 51,2, respectively, andt2, for i 53. The integral overf
producesp times a vector

wW ~ t !5~12t2,12t2,2t2!. ~107!

The variableq can be changed tou of Eq. ~96!, and intro-
ducing the constant

b5
A2m

l0
2 , ~108!

one obtains the vector

tW5E
0

1

dt t~12t2!wW ~ t !t~ t !, ~109!

t~ t !5E
0

`

du
~bm/t !2u2

~bm/t !21u2 e2u2
. ~110!

that appears in the resulting interaction term:

WQQ̄52
4

3

a

2p
b23(

i 51

3

t i

]2

]ki
2 . ~111!

The next nonvanishing terms in the Taylor expansion con
the fourth and higher even powers ofqW . They are expected to
be small in the momentum region dominated by the C
lomb dynamics and do not count around the bottom of
harmonic potential. The remaining question is if the h
monic approximation can be rotationally symmetric.

The interactionWQQ̄ given by Eq.~111! is rotationally
symmetric when all components oftW are equal, or

E
0

1

dt t~12t2!~123t2!t~ t !50. ~112!
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The functiont(t) depends onm in a limited way because the
integral overu in Eq. ~110! extends only from 0 to about 1
b/t is large, andbm/t@1 producest(t)5b,

b5Ap/4. ~113!

The behavior oft(t) near t50 does not matter because
the factort in Eq. ~112!, and the condition~86! is of little
consequence ifm2 raises quickly from 0 att50. For any
ansatz of Eq.~88! with a smalldm ,

t~ t !5
c2~ t !

11c2~ t !
b, ~114!

which is equivalent to the constantb if c(t)@1 for tÞ0.
The factorization feature is independent of the shape of
RGEP form factorf and provides an opportunity to fitm
analytically to satisfy Eq.~112!. Suppose that Eq.~88! is
valid and

c2~ t !

11c2~ t !
5c2tdm~12rt2!. ~115!

Equation~112! is satisfied when

r5dm~81dm!/~21dm!, ~116!

and

c2~ t !5
c2tdm~12rt2!

12c2tdm~12rt2!
~117!

leads to a rotationally symmetric harmonic oscillator pote
tial. All components oftW are equalt̃,

t̃5bc2S 1

6
2

r

12D . ~118!

r varies between 0 and 17/25 whendm varies between 0 and
1/2 in accord with Eq.~86!. In the limit dm→0, r→0 and
c2(t);c2/(12c2) outside the area of very smallt. In this
example, the size of the coefficient functionsc( i ,5,j ) de-
pends on the size of the constantc and grows to large value
whenc→1.

Every gluon mass ansatzm2 that is large outside the are
of small t and vanishes abruptly fort→0 leads to a spheri-
cally symmetric harmonic oscillator potential with the sprin
constant

k5
4

3

a

p
b23t̃, ~119!

and

t̃;b/6. ~120!

The numberb depends on the shape of the RGEP form fa
tor f, which reflects the dependence of the effective dynam
on the RG scheme, butb is stable forf abs of similar shapes
as functions ofab/l2; see Eq.~24!.
2-14
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The first approximation for heavy quarkonium dynam
in position space can be defined by the Fourier transform
the eigenvalue equation forHQQ̄ , with

^rWuk&5exp~ ikW rW !. ~121!

This transform exists only in the relative motion variable
since the motion of the quarkonium as a whole is descri
in a relativistic fashion and the relation between the relat
motion of quarks and the motion of the bound state a
whole does not coincide for large speeds with the one kno
in NR theory. The Schro¨dinger equation reads

F2m2
D r

m
2

4a

3 S 1

r
1BFD1

k

2
r 2Gc~rW !5Mc~rW !,

~122!

wherek5mv2/2, and

v5A4

3

a

p
lS l

mD 2A b

6A2
. ~123!

The number@b/(6A2)#1/2 gives (p/1152)1/4;0.23, which is
large enough for the frequencyv to fit into the ball park of
phenomenologically plausible scales when one allows su
ciently largel anda with some choice form. The observed
spectrum of charmonium is known to have an intermed
character between the Coulomb and harmonic oscilla
spectra. But the key problem is to determine the size
direction of corrections that need to be included in order
compare the theory with data. The inclusion of light qua
requires quantitative understanding of the mechanism of
ral symmetry breaking in the effective particle approach a
a comprehensive phenomenological analysis demands
ther advance in the theory.

With this reservation taken for granted, the simplicity a
physically appealing content of Eqs.~122! and ~123!, espe-
cially the otherwise hard to explain quantum-mechanical
fect of binding above the threshold of 2m, deserve a clea
summary of their apparent dependence onl and no depen-
dence on the regularizations introduced in the initial Ham
tonian. The effective dynamics ofHl , and thus alsoHQQ̄ for
l5l0, is not sensitive to the factorsr D because the RGEP
equations produceHl near the end of the RG evolution the
describe, and this is independent of the starting point al
5` where the regularization and corresponding coun
terms are inserted in the QCD bare Hamiltonian. The f
that HQQ̄ emerges as independent of the small-x regulariza-
tion factorsr d in the initial Hamiltonian is of different origin
and follows from the color singlet nature of the quarkoniu
state. In the colorless state, effective quarks and gluons
teract in a way that is no longer sensitive to the cutoff
gluon x at x;d because the quark and antiquark are
close to each other to produce a long-range interaction
sufficient strength to introduce sensitivity to the small-x cut-
off. In this situation, however, one may wonder what para
eter is actually replacingd in controlling thex-dependent
factors, and why no such parameter is visible in Eqs.~122!
and ~123!. The answer is that the effective gluon emissi
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and re-absorption, and exchange, are limited in the regio
x;0 by how the gluons and quarks interact. This in turn
contained in the parameters of the mass ansatz for the e
tive gluons that move near the pair of quarks. These par
eters limitx long befored can matter. But the ansatz param
eters turn out to be irrelevant for the final equation to
because what counts forx near 0 is a competition betwee
how quarks self-interact and how they exchange effec
gluons. The result of this competition depends on the glu
dispersion relation. But as long as the latter has the struc
m2/x with nonzerom2, the details ofm2 are secondary to the
fact thatm2/x is large and thatf l modulates the interaction
as for massless gluons and quite independently of the g
mass ansatz. The result of this modulation provides E
~122! and ~123!.

Thus, although there is nof l written explicitly in Eq.
~122!, the result is a consequence of the correlations imp
by f l in the dynamics described byHl . These correlations
become transparent after the energy of effective gluon
parametrized using the concept of a mass. Note, howe
that the ansatz is introduced according to Eq.~1!, and thus
serves only to finesse the result that should be independe
m2 almost entirely for the true value of the coupling consta
a at ls for which the state with two effective quarks a
proximates the full solution well. In this region, one shou
also expect thata and m depend onl in such a way that
solutions for the spectrum do not depend onl. Unfortu-
nately, this range cannot be estimated theoretically at
current level of approximation, and fourth-order terms a
required to shed more light on the issue. Nevertheless,
should keep in mind that the parameterb depends somewha
on the function chosen forf l and its value given in Eq.~113!
is only a good estimate of the result for a whole class
similar functions.

VI. CONCLUSION

The Coulomb interaction between quarks in hea
quarkonia is corrected by the potential well that is excava
by the one effective gluon exchange in the overlapping s
interaction gluon clouds of the quarks. At the bottom, t
well shape is a quadratic function of the distance between
quarks. The resulting harmonic oscillator force plays the r
of a confining one in a limited range. At distances mu
larger than the Bohr radius the quadratic approximation st
working. Emission of additional gluons and pairs of lig
quarks will further change the rate of growth of the potenti
The size of these effects should be computable in the pre
approach by evaluating effective Hamiltonians order by
der in a weak-coupling expansion and solving eigenva
problems for them numerically.

The effective particle approach is of interest becaus
describes the relative motion of quarks independently of
speed of the quarkonium as a whole. This result is obtai
at the price of setting up QCD in its Hamiltonian version
LF dynamics, with a host of difficulties in the renormaliz
tion program that had to be overcome. Further advance
the RGEP and methods of solving the eigenvalue equat
for HamiltoniansHl are expected to reflect the well-know
2-15
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features of interactions of relativistic particles. The first a
proximation forHQQ̄ can be expected to work well in th
refined calculations because it appears to be largely inde
dent in its structure from the details of the RGEP vertex fo
factors and the gluon mass ansatz. The first approxima
also appears to involve the least possible degree of comp
ity as a basis around which a meaningful successive appr
mation scheme can emerge. A few percent accuracy in ev
ating effective Hamiltonians is known to be achievable us
essentially the same method in the case of elementary m
models with asymptotic freedom and bound states.

Since the approach developed here is boost invarian
can connect physical images of hadrons in different fram
as soon as the hadron dynamics is understood in one of th
Although the light quarks are expected to behave differen
from the heavy ones, one should note that the Schro¨dinger
equation withHl does not lead to the spread of probabil
towards large relative momenta and large numbers of ef
tive particles. The spread is halted because the interac
terms inHl contain form factors. These form factors are t
reason for hope that the effective particle expansion m
converge.

Aside from QCD, the same scheme for setting up a
solving quantum field theory should be tested in the cas
QED. There, the effective mass ansatz for virtual photon
much more restricted and small-x effects are of less signifi
cance. On the other hand, QED is not asymptotically f
and its effective nature requires better understanding.
RGEP approach may help in defining QED as an effec
theory. But one needs to first verify if perturbation theo
with Hl can produce covariantS-matrix in QED in orders
higher than second.

APPENDIX A: REGULARIZED LF HAMILTONIAN
OF QCD

The canonical LF Hamiltonians of gauge theories, sim
to the Hamiltonians in the infinite momentum frame@68–
70#, are well known@71,72#, and extensive literature exist
on the lightlike axial gauges@73,74#. The Hamiltonian given
below is further specified by inclusion of the ultraviolet a
small-x regularization factors that render a computable
erator. This means thatH does not require a separate reg
larization prescription for evaluating loop integrals. T
same regularized Hamiltonian was used in Ref.@32# but the
quark terms needed here were not explicitly given there.H is
supplied with countertermsHDd . Their structure is known
from considerations similar to Ref.@2#. Details can be calcu
lated using RGEP. The initial Lagrangian is

L5c̄~ iD” 2m!c2 1
4 FmnaFmn

a , ~A1!

with one flavor of quarks of massm,

Fmn52 i @Dm,Dn#/g, ~A2!

and

Dm5]m1 igAm , ~A3!
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whereA5Aata, @ ta,tb#5 i f abctc, and Tr(tatb)5dab/2. The
classical Nether generator of evolution inx1 takes the form
~the Gauss law constraint is formally solved inA150 gauge
and the counterterms are added as the last term from h
sight!,

H5Hc21HA21HA31HA41HcAc1HcAAc1H [ ]AA] 2

1H [ ]AA](cc)1H (cc)21HDd , ~A4!

where each term is an integral over the LF hyperplane,

Hi5E dx2 d2x' Hi , ~A5!

and

H c25
1

2
c̄g1

2]'21m2

i ]1
c, ~A6!

H A252
1

2
A'~]'!2A', ~A7!

H A35gi]aAb
a@Aa,Ab#a, ~A8!

H A452
1

4
g2@Aa ,Ab#a@Aa,Ab#a, ~A9!

HcAc5gc̄A” c, ~A10!

HcAAc5
1

2
g2c̄A”

g1

i ]1 A” c, ~A11!

H[ ]AA] 25
1

2
g2@ i ]1A',A'#a

1

~ i ]1!2@ i ]1A',A'#a,

~A12!

H[ ]AA](cc)5g2c̄g1tac
1

~ i ]1!2 @ i ]1A',A'#a,

~A13!

H(cc)25
1

2
g2c̄g1tac

1

~ i ]1!2c̄g1tac. ~A14!

A quantum Hamiltonian is introduced by expanding t
fields into Fourier components atx150 and imposing com-
mutation relations on the latter. They define creation a
annihilation operators for bare particles.

c5(
sc

E @k#@xcuksbksce
2 ikx1xcvksdksc

† eikx#.

~A15!

The integration measure is
2-16
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@k#5
u~k1!k1d2k'

16p3k1 , ~A16!

$bksc ,bk8s8c8
† %5$dksc ,dk8s8c8

† %

516p3k1ds
s8
dcc8d

3~k2k8!. ~A17!

d3(k2k8)5d(k12k81)d(k12k81)d(k22k82). The cre-
ation and annihilation operators have the power-counting
mension 1/k' ~the same result holds for gluons; see below!.
The spinors are given byuks5B(k,m)us and vks

5B(k,m)vs , wherevs5Cus* 5 ig2us* . us and vs are the
spinors for the fermions at rest in the arbitrarily chosen fra
of reference where the quantization procedure is introduc
The matrixB(k,m) represents the LF boost that turns a p
ticle with massm at rest to a moving one that has the m
mentumk, k25m2,

B~k,m!5
1

Ak1m
@L1k11L2~m1k'a'!#, ~A18!

whereL65g0g6/2. This matrix mixesk1 with m andk'.
But the second term, of the typeAk'/k1 when one countsm
and k' as similar, results only from writing the interactio
terms in a way that is short and convenient in calculatio
The independent degrees of freedom,c15L1c, contain
only the parts proportional toAk1/m. Thusc1 has the di-
mension ofk'2Ak1b, which in the position space on the L
leads to (x'Ax2)21 @2# if b;1/k'. The spinors at rest are

us5A2mFxs

0 G , ~A19!

vs5A2mF 0

j2s
G , ~A20!

wherej2s52 is2xs5sx2s . The gluon field atx150 is

Am5(
sc

E @k#@ tc«ks
m aksce

2 ikx1tc«ks
m* aksc

† eikx#,

~A21!

and the commutation relations read

@aksc ,ak8s8c8
†

#516p3k1ds
s8
dcc8d

3~k2k8!. ~A22!

a and a† have the dimension 1/k'. The polarization four-
vectors are introduced using LF boosts as for fermions,

«ks
m 5~«ks

1 50,«ks
2 52k'«s

'/k1,«s
'!, ~A23!

except that the boosts are applied to the polarization vec
«s

m5(0,0,«s
') that correspond to the selected state of a glu

moving along thez axis @12#. Terms that contain the ratio
k'/k1, which mix the transverse and longitudinal momen
06500
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e
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-

s.

rs
n

,

are again only a shorthand notation for writing interactio
The independent transverse fieldA' contains only polariza-
tion vectors«s

' that have dimension 1.A' has dimension of
k'2a, which matches the required 1/x' on the LF@2# when
a;1/k', as promised.

The kinetic energy operator for quarks,Hc2, is given in
Eq. ~3!, and for gluons,HA2, is given in Eq.~4!. The triple-
gluon interaction reads

HA35(
123

E @123#d̃~p†2p! r̃ Dd~3,1!

3@gY123a1
†a2

†a31gY123* a3
†a2a1#. ~A24!

The symbols introduced in this operator occur in all oth
terms and require explanation for completeness; see also
@32#. The conservation of momentum in the interaction v
tices is enforced by the factor

d̃~p†2p!516p3d3F(
a†

pa†2(
a

paG . ~A25!

The regularization factors are given by

r̃ Dd~p,d!5r Dd~p,d!r Dd~p,p2d!, ~A26!

where

r Dd~p,d!5r D~kd/p
'2 !r d~xd/p!u~xd/p!. ~A27!

The symbolp refers to the parent momentum~half of the
sum of all momenta of all particles coupled in a vertex!, and
d to the daughter particle momentum, i.e., the momentum
the particle emitted or absorbed in the vertex. The argume
of the regularization factors are defined by

kd/p
' 5kd

'2xd/pkp
' , ~A28!

xd/p5kd
1/kp

1[xd /xp . ~A29!

The functions used here are@32#

r D~k'2!5exp@2k'2/D2#, ~A30!

r d~x!5u~x2e!xd, ~A31!

ande/d tends to 0 whend→0. The gluon spin vertex facto
reads

Y1235 i f c1c2c3F«1* «2* •«3k2«1* «3•«2* k
1

x2/3

2«2* «3•«1* k
1

x1/3
G . ~A32!

The simplified notation means:«[«', k[k1/3
' . The quartic

gluon vertex is
2-17
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HA45 (
1234

E @1234#d̃~p†2p!
g2

4
@JA41234a1

†a2
†a3

†a4

1XA41234a1
†a2

†a3a41JA41234
* a4

†a3a2a1#, ~A33!

where

JA412345
2

3
@ r̃ 112,1r̃ 4,3~«1* «3* •«2* «42«1* «4•«2* «3* !

3 f ac1c2f ac3c4

1 r̃ 113,1r̃ 4,2~«1* «2* •«3* «42«1* «4•«2* «3* !

3 f ac1c3f ac2c4

1 r̃ 312,3r̃ 4,1~«1* «3* •«2* «42«3* «4•«2* «1* !

3 f ac3c2f ac1c4#, ~A34!

XA412345 r̃ 112,1r̃ 314,3~«1* «3•«2* «42«1* «4•«2* «3!

3 f ac1c2f ac3c4

1@ r̃ 3,1r̃ 2,41 r̃ 1,3r̃ 4,2#~«1* «2* •«3«42«1* «4•«2* «3!

3 f ac1c3f ac2c4

1@ r̃ 3,2r̃ 1,41 r̃ 2,3r̃ 4,1#~«1* «2* •«3* «42«1* «3•«2* «4!

3 f ac1c4f ac2c3. ~A35!

The abbreviated notation for the regularization factors
r̃ p,d[ r̃ Dd(p,d). Denoting t i j

a [x ic
† tax jc , the quark-gluon

coupling is given by
06500
s

HcAc5(
123

E @123#d̃~p†2p! r̃ 3,1g@ ū2«” 1* u3t23
1 b2

†a1
†b3

2 v̄3«” 1* v2t32
1 d2

†a1
†d31ū1«” 3v2t12

3 b1
†d2

†a31H.c.#,

~A36!

where the spin vertex factors are

ū2«” 1* u35Ax3 /x2x2
†F i ~k1/3

' «1*
'!3s3

1
x21x3

x1
k1/3

' «1*
'2m3

x1

x3
s'«1*

's3Gx3 , ~A37!

v̄3«” 1* v25Ax3 /x2j23
† F2 i ~k1/3

' «1*
'!3s31

x21x3

x1
k1/3

' «1*
'

2m3

x1

x3
s3s'«1*

'Gj22 , ~A38!

ū1«” 3v25Ax3 /x1Ax3 /x2x1
†F2 i ~k1/3

' «3
'!3

1
x12x2

x3
k1/3

' «3
's32m1s'«3

'Gj22 . ~A39!

The instantaneous fermion interaction reads

HcAAc5 (
1234

E @1234#d̃~p†2p!~g2/2!2Ax1x4•$%,

~A40!

where the curly brackets$% contain the operators ordere
according to the ruleb†d†a†adb;
$%5 r̃ 112,1r̃ 314,3F t14
23

x1
†@2* 3#x4

x11x2
b1

†a2
†a3b41t14

23
j21

† @23* #j24

x11x2
d4

†a3
†a2d1G

1@ r̃ 1,2r̃ 4,31 r̃ 2,1r̃ 3,4#F t14
23

x1
†@23* #x4

x12x2
b1

†a3
†a2b41t14

23
j21

† @2* 3#j24

x12x2
d4

†a2
†a3d1G

1F r̃ 3,4r̃ 112,1t14
23

x1
†@2* 3#s3j24

x11x2
b1

†d4
†a2

†a31H.c.G1F r̃ 2,1r̃ 314,3t14
23

x1
†@23* #s* 3j24

x12x2
b1

†d4
†a3

†a21H.c.G
1F1

2 S @ r̃ 1,2r̃ 3,41 r̃ 2,1r̃ 4,3#t14
23

x1
†@23#s3j24

x12x2
1@ r̃ 1,3r̃ 2,41 r̃ 3,1r̃ 4,2#t14

32
x1

†@32#s3j24

x12x3
Db1

†d4
†a2a31H.c.G

1F1

2 S r̃ 4,3r̃ 112,1t14
23

x1
†@2* 3* #x4

x11x2
1 r̃ 4,2r̃ 113,1t14

32
x1

†@3* 2* #x4

x11x3
Db1

†a2
†a3

†b41H.c.G
1F1

2 S r̃ 1,2r̃ 314,4t14
23

j21
† @2* 3* #j24

x12x2
1 r̃ 1,3r̃ 214,4t14

32
j21

† @3* 2* #j24

x12x3
Dd4

†a2
†a3

†d11H.c.G . ~A41!
2-18
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The symbols mean:t i j
ab5x ic

† tatbx jc , and @ab#5«a
'«b

'

1 i («a
'3«b

')3s3. The star, *, means that the correspondi
polarization vector is complex conjugated: *→«* . The quar-
tic gluon term with derivative reads

H [ ]AA] 25 (
1234

E @1234#d̃~p†2p!g2@~J [ ]AA] 21234a1
†a2

†a3
†a4

1H.c.!1X[ ]AA] 2 1234a1
†a2

†a3a4#, ~A42!

where

J [ ]AA] 2123452
1

6 F r̃ 112,1r̃ 4,3«1* «2* •«3* «4

3
~x12x2!~x31x4!

~x11x2!2 f ac1c2f ac3c4

1 r̃ 113,1r̃ 4,2«1* «3* •«2* «4

3
~x12x3!~x21x4!

~x11x3!2 f ac1c3f ac2c4

1 r̃ 312,3r̃ 4,1«3* «2* •«1* «4

3
~x32x2!~x11x4!

~x31x2!2 f ac3c2f ac1c4G ,
~A43!

X[ ]AA] 212345
1

4 F r̃ 112,1r̃ 314,3«1* «2* •«3«4

3
~x12x2!~x32x4!

~x11x2!2 f ac1c2f ac3c4

2@ r̃ 3,1r̃ 2,41 r̃ 1,3r̃ 4,2#«1* «3•«2* «4

3
~x11x3!~x21x4!

~x22x4!2 f ac1c3f ac2c4
06500
2@ r̃ 3,2r̃ 1,41 r̃ 2,3r̃ 4,1#«1* «4•«2* «4

3
~x21x3!~x11x4!

~x12x4!2 f ac1c4f ac2c3G .
~A44!

The instantaneous gluon interaction between quarks and
ons reads

H [ ]AA](cc)5 (
1234

E @1234#d̃~p†2p!g2i f a12t34
a 2Ax3x4$%,

~A45!

where the brackets$% contain

$%5«1* «2*
x22x1

2~x11x2!2@ r̃ 112,1r̃ 314,3j23
† s3x4a1

†a2
†d3b4

1 r̃ 112,1r̃ 4,3x3
†x4b3

†a1
†a2

†b42 r̃ 112,1r̃ 3,4j23
† j24d4

†a1
†a2

†d3#

2«1* «2

x11x2

~x31x4!2r̃ 314,3r̃ 2,1x3
†s3j24b3

†d4
†a1

†a2

1«1* «2

x11x2

~x12x2!2@~ r̃ 2,1r̃ 4,31 r̃ 1,2r̃ 3,4!j23
† j24d4

†a1
†a2d3

2~ r̃ 2,1r̃ 3,41 r̃ 1,2r̃ 4,3!x3
†x4b3

†a1
†a2b4#1H.c. ~A46!

Finally, the instantaneous gluon interaction between qua
reads

H (cc)25 (
1234

E @1234#d̃~p†2p!
g2

2
4Ax1x2x3x4$%,

~A47!

where the brackets$% contain
$%52
1

2 Fx1
†x2x3

†x4

~x12x2!2 t12
a t34

a @ r̃ 1,2r̃ 4,31 r̃ 2,1r̃ 3,4#2
x3

†x2x1
†x4

~x32x2!2 t32
a t14

a @ r̃ 3,2r̃ 4,11 r̃ 2,3r̃ 1,4#Gb1
†b3

†b2b4

1
1

2 F j22
† j21j24

† j23

~x12x2!2
t21
a t43

a @ r̃ 1,2r̃ 4,31 r̃ 2,1r̃ 3,4#2
j22

† j23j24
† j21

~x32x2!2
t23
a t41

a @ r̃ 3,2r̃ 4,11 r̃ 2,3r̃ 1,4#Gd1
†d3

†d2d4

1S Fx1
†x2x3

†s3j24

~x12x2!2
t12
a t34

a r̃ 2,1r̃ 314,32
x3

†x2x1
†s3j24

~x32x2!2
t32
a t14

a r̃ 2,3r̃ 114,1Gb1
†b3

†d4
†b21H.c.D

2S Fx1
†s3j22j24

† j23

~x11x2!2
t12
a t43

a r̃ 4,3r̃ 112,12
x1

†s3j23j24
† j22

~x11x3!2
t13
a t42

a r̃ 4,2r̃ 113,1Gb1
†d2

†d3
†d41H.c.D

22
x1

†x2j24
† j23

~x12x2!2
t12
a t43

a @ r̃ 1,2r̃ 4,31 r̃ 2,1r̃ 3,4#b1
†d3

†d4b212
x1

†s3j23j24
† s3x2

~x11x3!2
t13
a t42

a r̃ 113,1r̃ 214,2b1
†d3

†d4b2 . ~A48!
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Useful color identities are:tatbta52ta/(2Nc), tatb1tbta

5dab/Nc1dabctc, dabcdabd5@(Nc
221)/Nc#d

cd, f abctbtc

5 i (Nc/2)ta.

APPENDIX B: QlQ̄l INTERACTION

Several factors are needed to estimate the small-x behav-
ior of the potential kernelṽ0(13,24) in Eq.~71!. Momenta
are labeled according to Figs. 1 and 2.

f 13,245exp@2~M 13
2 2M 24

2 !2/l4#, ~B1!

where

M i j
2 54~m21ukW i j u2!

5
k i j

'21m2

xixi
, ~B2!

with

ki j
'5k i j

' , ~B3!

ki j
3 5~xi21/2!Mi j , ~B4!

M 13
2 2M 24

2 54~kW131kW24!qW , ~B5!

where

qW 5kW132kW24, ~B6!

is the momentum transfer that goes over to the standard
in the NR limit,

M 13
2 2M 24

2 5
2k13

' q'2q'22z~122x11z!M 13
2

~x12z!~x31z!
.

~B7!

In the last term in Eq.~71!, the form factorsf 1,52f 53,4 have
arguments

M 52
2 2m25

x1

x12z
D1 , ~B8!

where

D1[
x1

uzu S q'2
z

x1
k13

' D 2

1m2
uzu
x1

, ~B9!

and,

M 53
2 2m25D3 , ~B10!

where

D35
x3

uzuS q'1
z

x3
k13

' D 2

1m2
uzu
x3

, ~B11!

while the form factorsf 3,54f 51,2 have the arguments
06500
ne

M 54
2 2m25

x3

x31z
D3 , ~B12!

and

M 51
2 2m25D1 . ~B13!

The last term in Eq.~71! can be written with the coefficien
15(12 f 13,24)1 f 13,24 but only the second term counts
smallz because (12 f 13,24) is proportional to the momentum
transfer squared. The factorf 13,24 becomes common to al
terms in Eq.~71! and is taken out in front. The LF instanta
neous term can be split into the partff that joins the low-
energy exchange and 12 f f that goes with the high-energ
exchange. This way one obtains

S k13
'21m0

2

x1x3
1

m̃1
2

x1
1

m̃3
2

x3
2M2D c̃~k13

' ,x1!

2
4a

3p2E dx2 d2k24
'Ax1x3

x2x4

f 13,24

x5
2 ṽ0~13,24!c̃~k24

' ,x2!

50, ~B14!

where

ṽ0~13,24!5u~z! r̃ 5/1r̃ 5/4~ ṽ1high1 ṽ1 low!

1u~2z! r̃ 5/3r̃ 5/2~ ṽ2high1 ṽ2 low!. ~B15!

The gluon mass ansatz contributes to the low-energy
change terms only. In terms of the invariant masses fr
Eqs.~B8!–~B13!,

ṽ1high5
f 1,52f 53,421

2

3H x1
21x4

2

x1x4

~M 52
2 2m2!~M 53

2 2m2!

~M 52
2 2m2!21~M 53

2 2m2!2
21J ,

~B16!

ṽ2high5
f 3,54f 51,221

2

3H x3
21x2

2

x3x2

~M 54
2 2m2!~M 51

2 2m2!

~M 54
2 2m2!21~M 51

2 2m2!2
21J .

~B17!

These have the same limit whenz→0 for fixed q',

lim
z→0

ṽ1high5 lim
z→0

ṽ2high

5
f 3,54f 51,221

2

x12x3

x1x3~x1
21x3

2!

~q'2k13
' !22k13

'2

q'2
z

1o~z2!. ~B18!
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The terms on the order ofz2 and higher are finite when
divided by the square ofx55uzu. Terms linear inz produce
an integral convergent in the sense of principal value@2,16#.
Whenq';Az→0, d2k24

' removes one power ofz from the

denominator in Eq.~70!, while ṽ6high vanish forz→0. The
contributions of ṽ6high are kW2/m2 times smaller than the
dominant terms and can be ignored in the first approxim
tion. One can see this by integratingṽ6high with a Coulomb
wave function.

The low-energy terms read

ṽ1 low5
f 1,52f 53,4

4 F22
~M 53

2 2m2!/x42m2~2,5,3!/x5

~M 52
2 2m2!/x11m2~2,5,3!/x5

2
~M 52

2 2m2!/x12m2~2,5,3!/x5

~M 53
2 2m2!/x41m2~2,5,3!/x5

G , ~B19!

ṽ2 low5
f 3,54f 51,2

4 F22
~M 51

2 2m2!/x22m2~1,5,4!/x5

~M 54
2 2m2!/x31m2~1,5,4!/x5

2
~M 54

2 2m2!/x32m2~1,5,4!/x5

~M 51
2 2m2!/x21m2~1,5,4!/x5

G . ~B20!

APPENDIX C: MASS TERMS

The mass terms withi 51,3 in the eigenvalue Eq.~B14!
are given in Eq.~89!, with M 1

2 given in Eq.~63! andM 3
2 in

Eq. ~65!. m0
2 originates from Eq.~28! with l5l0. Namely,

the quark mass counterterm inX of Eq. ~2! addsdmDd
2 to the

original mass parameterm2 in Eq. ~3! and the free
ultraviolet-finite part of the counterterm is such thatm0

2 ap-
pears in Eq.~70!. The condition onm0

2 that the eigenstates o
Hl0

with quantum numbers of a single quark have eigenv
ues growing to infinity is fulfilled below by representin
gluon interactions in the case of the single quark state b
new gluon mass ansatz. The resulting value ofm0

2 enters into
the quarkonium dynamics. The determination of t
ultraviolet-finite part of the mass counterterm inX in Eq. ~2!
is thus based on the picture that comes out from simu
neous consideration of two eigenvalue equations, one for
state with quantum numbers of a single quark~or an anti-
quark, the result is the same!, and another one for the
quarkonium. The key physical assumption made in the co
parison is that the binding of effective quarks in the quar
nium state occurs at the expense of change in their individ
structure. While the buildup of self-interacting clouds of gl
ons around single quarks leads to the infinite quark mas
in the case of a colorless pair the main parts of the glu
clouds can recombine into a colorless object that may fly
of the region of strong interaction with the quarks, leavi
behind only the minimal remnants of the gluon clouds
quired to form the quarkonium eigenstate with a finite ma
The new finite balance is described using the gluon m
ansatz parameterdm . The finite balance can be achieve
because the quark-antiquark state looks neutral from la
06500
-

l-

a

-
he

-
-
al

s,
n
t

-
s.
ss

ge

distances and does not continue to generate gluons ove
finite distances along the LF. This scenario is partly simi
to the one originally developed in the LF dynamics in Re
@42,43#, and studied in Refs.@44,45#. The main differences
are related to the fact that the physical picture that emer
here in the finite effective theory with the gluon mass ans
relies on the phenomenological parameterdm . A formal cut-
off parameterd1 of the canonical theory, the coupling co
herence phenomenon that may work over many scales o
ultraviolet cutoff, and the condition of transverse locality a
not employed in the new picture. Instead, the present s
nario can be studied in higher orders of perturbation the
according to the known rules@30,32# that explicitly preserve
the boost invariance, cluster decomposition property,
unitary connection with the initial theory.

The eigenstate ofHl0
with a single quark quantum num

bers and momentump with componentsp1 and p' has the
eigenvalue

p25~p'21m̃2!/p1, ~C1!

and the decomposition in the effective particle basis,

up&5uQl0
&1uQl0

gl0
&1•••. ~C2!

The new gluon mass ansatz is introduced in the quark-gl
component. It is different than in the quarkonium case
cause the states have different quantum numbers and
made of different numbers of effective particles. Droppi
the subscriptl0 as in Eq.~54!, the eigenvalue problem is
written as

~Tq1T̃g!uQg&1YuQ&5EuQg&,

YuQg&1TquQ&5EuQ&. ~C3!

The new ansatz enters through the kinetic energyT̃g , which
contains

m̃l0

2 5ml0

2 1mQ
2 ~x,k'!, ~C4!

wherex andk' refer to the relative motion of the effectiv
gluon with respect to the quark. The operatorR from Eq.
~57! is now replaced by the one withP̂ that projects on the
single effective quark basis state with kinematical mom
tum componentsp1 andp'. In the perturbative expansion i
g, only the second term on the right-hand side of Eq.~C4!
contributes in orders up tog2. Thanks to the boost invari
ance, the resulting eigenvalue condition reduces to an e
tion for m̃2, which is independent ofp,

m̃25m0
22

4a0

3p2E dx d2k' r̃ d
2~x!

3 f l0

2 ~m2,M 2!
1

x2

M 22m2

M Q
2 2m2 , ~C5!

M Q
2 5@k'21mQ

2 ~x,k'!#/x1~k'21m2!/~12x!.
~C6!
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For m̃2 to be positive and growing to infinity whend→0,
one can writem0

2 in the integral form,

m0
25m21

4a0

3p2E dx d2k' r̃ d
2~x! f l0

2 ~m2,M 2!
1

x2

M 22m2

M 0
22m2

,

~C7!

with some functionM 0
2 that satisfies the condition

M Q
2 .M 0

2.m2. ~C8!

This condition can be satisfied by writing

M 0
25@k'21m0

2~x,k'!#/x1~k'21m2!/~12x!, ~C9!
s.

06500
and assuming that

mQ
2 .m0

2>0. ~C10!

As long as the differencemQ
2 2m0

2 does not vanish forx
→0, the single quark mass will tend tò whend→0. But
this may easily happen here because the larger is the g
mass ansatzmQ

2 , the stronger the single quark mass eige
value diverges in the limitd→0, while m0

2 remains free to
vanish in the limitx→0 and lead to a finite mass contribu
tion in the quarkonium dynamics. Using Eq.~C7! for m0

2 one
obtains Eq.~89!.
d
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